رویکردی مبتنی بر الگوریتم زنجیبیکی به حل مسئله قطع‌گماری با پازخور خروجی

ناصر ساداتی (دانشبار)
آزمایشگاه سیستم‌های هوشمند
دانشکده مهندسی برق، دانشگاه صنعتی نفت

در این نوشتار، روش جدیدی برای حل مسئله قطع‌گماری با پازخور خروجی (لغزدگی) شناخته‌شده به شکل زنجیبیکی (لگزدگی) نامیده می‌شود. این الگوریتم بر اساس کنترل زنجیبیکی (لگزدگی) است که به سیستم‌های خطی تغییرات زمانی را در نظر گرفته است.

\[x(t) = A x(t) + B u(t) \]
\[y(t) = C x(t) \]

که در آن، \(A, B, C \) و \(u, y \) ماتریس‌های حالتی و ورودی، خروجی نام‌گذاری شده‌اند.

ماتریس‌های خطی کنترلی با پازخور خروجی از نظر نوع و ترتیب فرضی، راست و بغل \(A, B \) و \(C \) در مساحتی به‌صورت یکدیگر و در صورتی که \(x_{0} \) از یک مجموعه مستقل به‌وسیله مقدار \(u \) داده شود، مقدار خروجی را \(y(t) \) به‌صورت \(y(t) = C x(t) \) به‌دست می‌آید.

در این نوشتار، روش جدیدی برای حل مسئله قطع‌گماری با پازخور خروجی (لغزدگی) شناخته‌شده به شکل زنجیبیکی (لگزدگی) نامیده می‌شود. این الگوریتم بر اساس کنترل زنجیبیکی (لگزدگی) است که به سیستم‌های خطی تغییرات زمانی را در نظر گرفته است.

\[x(t) = A x(t) + B u(t) \]
\[y(t) = C x(t) \]

که در آن، \(A, B, C \) و \(u, y \) ماتریس‌های حالتی و ورودی، خروجی نام‌گذاری شده‌اند.

ماتریس‌های خطی کنترلی با پازخور خروجی از نظر نوع و ترتیب فرضی، راست و بغل \(A, B \) و \(C \) در مساحتی به‌صورت یکدیگر و در صورتی که \(x_{0} \) از یک مجموعه مستقل به‌وسیله مقدار \(u \) داده شود، مقدار خروجی را \(y(t) \) به‌دست می‌آید.

در این نوشتار، روش جدیدی برای حل مسئله قطع‌گماری با پازخور خروجی (لغزدگی) شناخته‌شده به شکل زنجیبیکی (لگزدگی) نامیده می‌شود. این الگوریتم بر اساس کنترل زنجیبیکی (لگزدگی) است که به سیستم‌های خطی تغییرات زمانی را در نظر گرفته است.

\[x(t) = A x(t) + B u(t) \]
\[y(t) = C x(t) \]

که در آن، \(A, B, C \) و \(u, y \) ماتریس‌های حالتی و ورودی، خروجی نام‌گذاری شده‌اند.

ماتریس‌های خطی کنترلی با پازخور خروجی از نظر نوع و ترتیب فرضی، راست و بغل \(A, B \) و \(C \) در مساحتی به‌صورت یکدیگر و در صورتی که \(x_{0} \) از یک مجموعه مستقل به‌وسیله مقدار \(u \) داده شود، مقدار خروجی را \(y(t) \) به‌دست می‌آید.

در این نوشتار، روش جدیدی برای حل مسئله قطع‌گماری با پازخور خروجی (لغزدگی) شناخته‌شده به شکل زنجیبیکی (لگزدگی) نامیده می‌شود. این الگوریتم بر اساس کنترل زنجیبیکی (لگزدگی) است که به سیستم‌های خطی تغییرات زمانی را در نظر گرفته است.

\[x(t) = A x(t) + B u(t) \]
\[y(t) = C x(t) \]

که در آن، \(A, B, C \) و \(u, y \) ماتریس‌های حالتی و ورودی، خروجی نام‌گذاری شده‌اند.

ماتریس‌های خطی کنترلی با پازخور خروجی از نظر نوع و ترتیب فرضی، راست و بغل \(A, B \) و \(C \) در مساحتی به‌صورت یکدیگر و در صورتی که \(x_{0} \) از یک مجموعه مستقل به‌وسیله مقدار \(u \) داده شود، مقدار خروجی را \(y(t) \) به‌دست می‌آید.

در این نوشتار، روش جدیدی برای حل مسئله قطع‌گماری با پازخور خروجی (لغزدگی) شناخته‌شده به شکل زنجیبیکی (لگزدگی) نامیده می‌شود. این الگوریتم بر اساس کنترل زنجیبیکی (لگزدگی) است که به سیستم‌های خطی تغییرات زمانی را در نظر گرفته است.

\[x(t) = A x(t) + B u(t) \]
\[y(t) = C x(t) \]

که در آن، \(A, B, C \) و \(u, y \) ماتریس‌های حالتی و ورودی، خروجی نام‌گذاری شده‌اند.

ماتریس‌های خطی کنترلی با پازخور خروجی از نظر نوع و ترتیب فرضی، راست و بغل \(A, B \) و \(C \) در مساحتی به‌صورت یکدیگر و در صورتی که \(x_{0} \) از یک مجموعه مستقل به‌وسیله مقدار \(u \) داده شود، مقدار خروجی را \(y(t) \) به‌دست می‌آید.

در این نوشتار، روش جدیدی برای حل مسئله قطع‌گماری با پازخور خروجی (لغزدگی) شناخته‌شده به شکل زنجیبیکی (لگزدگی) نامیده می‌شود. این الگوریتم بر اساس کنترل زن‌
معادله Λ فرق برای یک مشخص، بررسی K_{τ} خصوصی است. باپارای دیگر معلوم به نام شرایط ایجاد، با توجه به معادله Λ به دست آمده:

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.

$$\nabla A_1 = \nabla A_2 = \ldots = \nabla A_n$$

که در اینجا Λ به عنوان نماد مجموعه مشخصاتی از مدل‌های Λ عرضه می‌شود. معادله Λ تکراری ∇A_1 با ارائه ∇A_2، بررسی تکراری نکته (4) که در اینجا Λ به دست آمده، مشخصاتی از مدل‌های Λ عرضه می‌شود.
الگوریتم ژنتیکی پیشنهادی

الگوریتم ژنتیکی راهی برای اینکه فقط به بهینه سرایی استفاده و روش‌های مختلف بهینه سازی که به بهینه کریکه هستند. توانایی تولید جواب‌های بهینه در تولید جواب‌های بهینه را فراهم می‌کند.

تشکیل می‌شود که مجموعه فضاهای مربوط به هر یک از این مشخصاتی که برای این‌که جواب‌های بهینه را پیدا کنیم، می‌تواند مجموعه‌ای از جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند به طور دقیق اینکه جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینه جواب‌های بهینه را پیدا کند.

با استفاده از این مشخصات، می‌تواند در این جواب‌های بهینه را پیدا کند.

برای اینکه این اتفاق رخند، می‌تواند در این جواب‌های بهینه را پیدا کند.

از آنجا که هر گزینе
شکل 1. نمونه‌ی کروموزوم موجود در جمعیت.

5 یبت مشخصه‌ی الگوریتم، که شامل انواع الگوریتم تکرارگرای
مورد استفاده است. مورد استفاده
ی برای هر سیمینت بازخور خروجی در حالت
میانگینهای ماتریس بازخور خروجی در

هی انتخاب همیشه

محدودیت تابع کردن برخی از الگوریتم بازخور خروجی در

را از بین می‌رود.

اگر مجموعه کتلیف سیمینت حل نشده باشد، شامل مقادیر
یکسان باشد، معادله 2 پایین نمایش گیرنده آن می‌باشد که
کتلیف‌های یکسان به وجود آمده‌اند. این اعداد معادله 2 را برای
زیرنبه‌ط کشورشان می‌نماید.

\[P_{closed}(s) = \frac{1}{1 - e^{-\frac{1}{s}(s - A - BK_C)}} B_k \]

(8)

اگر \(s_i \) آنیل مقدار ویژه‌ای در زیرمجموعه‌ی (یا تکرار) باشد،

\[P_{closed}(s) \big|_{s_i = \lambda_i} = 0 \]

(9)

\[\frac{d_k}{ds_k} P_{closed}(s) \big|_{s_i = \lambda_i} = 0; k = 1, 2, \ldots, n \]

(10)

\[\frac{d_k}{ds_k}(s - A) \big|_{s_i = \lambda_i} = (\lambda_i - A)^{k+1} \]

(11)

حال اگر یک چرخه درجه \(k \) از الگوریتم به‌دست آمده باشد، کتابی 4 و 11 از معادله برداری \(\lambda_i \) به دست

\[e_{\lambda_i}^T (\lambda_i - A)^{-1} B_k = 0 \]

(12)

\[e_{\lambda_i}^T (\lambda_i - A)^{-1} B_k = 0 \]

\[K = [23/11, 5/1]/[23/11, 5/1] \]

(13)

از آنجا که یبت مشخصه‌ی الگوریتم ایستاده، الگوریتم تکرارگرای

برای‌یابی این کروموزوم به گره‌های می‌باشد. \(k = 2, \ldots, 4 \) و

(14)

از زیرمجموعه‌های بازخور خروجی حل ندهد که برای حالت جمعیت

مناظر بستر اولیه و سوم ماتریس \(K \) به کار می‌رود.

الگوریتم زیرنویسی یک‌شانه‌ای با تولید اتفاقات \(50 \) کروموزوم آغاز

می‌شود. تعداد این کروموزوم‌ها قبل از اجرای الگوریتم ممکن است

tغییر کند.

(ب) پیشرفت جمعیت

در هر مرحله از الگوریتم زیرنویسی، کروموزوم‌های موجود توسط

الگوریتم تکرارگرای تغییر می‌پذیرد. الگوریتم سطحی یا ستونی هر

کروموزوم را به‌طور کامل می‌دهد که اختلاف بین قطب‌های

دلونگا، قطب‌های سیمینت حل نشده که شود الگوریتم

تکرارگرای می‌تواند با برای هر کروموزوم اجرا شود. الگوریتم

تکرارگرای در یک‌شانه‌ای ماتریس \(K \) باشد. الگوریتم تکرارگرای

متوسط می‌شود.

روش‌های مختلف برای رای حالت جمعیت می‌باشد. \(\text{pim} \) است، از نظر MATLAB

چون ترم‌های مورد استفاده برای

هکت 11

شیراز-صفحه 11
هر کروموزوم نشان می‌دهد که چه مقدار قطعی‌های سیستم حلقه‌بندی به مقدار مورد نظر نزدیک‌اند. واضح است که باید از آسیب‌ترین روش‌ها برای تهیه نتایج مورد نظر کنترل تغییرات مربوط به فاصله‌های قطعی‌های مطلوب و قطعی‌های سیستم حلقه‌بندی است.

(۱۳)

$$e_i^T C (\lambda_i I - A - BK_i C)^{-1} BK_i \approx 1$$

$$e_i^T C (\lambda_i I - A - BK_i C)^{-1} BK_i \approx 1$$

از آنجا که $e_i^T C$ و $e_i^T C$ مجموعه خطوط دارد، به سادگی می‌توان نشان داد که:

(۱۴)

$$e_i^T C \Re(\lambda_i I - A - BK_i C)^{-1} BK_i \approx 1$$

$$e_i^T C \Imag(\lambda_i I - A - BK_i C)^{-1} BK_i \approx 1$$

یکی از معادلات فوق برای اولین قطب مختلط و دیگری برای مزدوج آن که برای خواهد رفت.

در یکی از کاربردی‌ترین کاربرد فاصله‌بندی بالای موقعیت به عنوان نمایشگری قرار گرفته: $\lambda_m (\lambda_i, \lambda_j, \lambda_k)$.

در صورت فاصله‌بندی نسبی ماریس پره، $(\lambda_i - \lambda_j)$ نیز به صورت زیر تعیین می‌شود:

(۱۵)

$$\text{Rel-distance}(K_i) = \text{absolute}((\lambda_i - \lambda_j) / (\lambda_n - \lambda_i))$$

$\lambda_i, \lambda_j, \lambda_k$ می‌توانند در فضای جدید، $\lambda_i - \lambda_j$، مقدار برای یکی از کروموزوم‌هایی که در نزدیکی یک مورد مختصات می‌باشد:

$$\text{Fitness}(M_i) = (\text{Max}(\text{Rel-distance}(K_i)))^{-t}$$

این عضو از تابع برازندگی کروموزوم و سیستم می‌باشد که قطب‌های سیستم حلقه‌بندی را نزدیک به مقدار کوچک‌ترین مقدار نیز یافته و به مقدار کوچک‌ترین مقدار نیز یافته و به مقدار بزرگ‌تر نیز یافthes و به مقدار بزرگ‌تر نیژ
جدول ۱ قوانین جهش در الگوریتم پیشنهادی

<table>
<thead>
<tr>
<th>تأثیر جهش بر عناصر انتخاب شده</th>
<th>وضعیت لولید عده تصادفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>برای هر مقدار یک عده تصادفی لولید می‌شود</td>
<td></td>
</tr>
<tr>
<td>بیت صفحه جامد یک یا موسود</td>
<td></td>
</tr>
<tr>
<td>اضافه کردن یک عده تصادفی</td>
<td></td>
</tr>
<tr>
<td>بیت الگوریتم</td>
<td></td>
</tr>
<tr>
<td>برای هر مقدار یک عده تصادفی لولید می‌شود</td>
<td></td>
</tr>
<tr>
<td>بیت مقدار یک عده تصادفی لولید می‌شود</td>
<td></td>
</tr>
<tr>
<td>مجموعه جامد از عناصر نشانگری بازگردی تناولهای قبلی می‌سورد</td>
<td></td>
</tr>
</tbody>
</table>

در نقاط انتخاب شده شکسته شده و جابجایی بین نقاط زوج و فرد صورت می‌گیرد، در ترتیب دو کروموزوم فرزند به جمعیت والدین اضافه می‌شوند. شکل ۲ چگونگی انجام این کار را نشان می‌دهد. در این الگوریتم، احتمال جابجایی ۲/۸ است که به این معنی است که

\[2 \times 0.8 = 1.6 \]

کروموزوم در جمعیت وجود خواهد داشت.

جهش

در این پیشنهاد، قوانین کلی جهش نشان داده جامدی شده. جهش

همانند قانون قسمت به قسمت انجام می‌شود. برای قسمت اول هر کروموزوم عده انتخابی تولید می‌شود و اگر این عدد از احتمال جهش کوچکتر باشد، فضایی دلخواه به صورت جدید جیسی می‌شود. قوانین جهش برای قسمت‌های بعدی جدول ۱ است.

چیدن قطعه‌های مطلوب به تولید در سطحی به همراه تنوع

آنها در زیر مجموعه‌های سطحی به سبب قسمت‌کردن الگوریتم کمک کند. جهش در زمانی اتفاق می‌افتد که مخزن‌های سطحی و سطحی به همراه می‌افتد. نتیجه‌گیری هر یک از تکرارهای الگوریتم، نتیجه‌گیری برتر نیز به همراه فرزندان به نسل بعدی می‌پردازد.
در یکی از تکرار کورنومین زنینیکی مجموع مربعات خطای نانش از هر کورنومین‌یهای مورد بررسی قابل‌توجهی این مجموع از یک کمتری بود که کورنومین به مرحله‌ای بعدی می‌رود. کورنومون‌یهای جدیدی و جدیدی می‌باشد. در نتیجه معمولاً، برای تولید یکچند یکی کورنومون مرجع از پارا به ترتیب می‌شود. در نتیجه معمولاً برای تولید یکچند یکی کورنومون مرجع

چنان که مشاهده می‌شود این مانیترس قابل‌توجهی می‌باشد. در نتیجه معمولاً برای تولید یکچند یکی کورنومون مرجع

در نتیجه معمولاً برای تولید یکچند یکی کورنومون مرجع

ej=

\[A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \]

\[B = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \]

\[C = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \]

مکان‌های مربوط به مجموع مربعات خطای سیستم همبسته مشاهده می‌شود. در نتیجه معمولاً برای تولید یکچند یکی کورنومون مرجع

نیتیجه‌گیری

در این بررسی، روش جدیدی برای حل مسئله قابل‌توجهی قابل‌توجهی با پارا به ترتیب می‌شود. در نتیجه معمولاً برای تولید یکچند یکی کورنومون مرجع

مرجع شماره 9.4 این مثال را به‌طور معمول یک چندین یکی کورنومون مرجع از یک چندین یکی کورنومون مرجع

سیستم‌های مختلط کارایی آن را به‌طور معمول یک چندین یکی کورنومون مرجع

\[A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \]

\[B = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \]

\[C = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \]