بررسی تأثیر بار آلودگی و شرایط محیطی بر زیست‌شناسی تولوتن از فاضلاب در سیستم بی‌هوازی

مقدمه

با توجه به کمبود منابع آب نسبی، به‌ویژه در جنگال سال‌های اخیر، استفاده بهینه از این منابع بسیار ضروری است. رشد جمعیت شهرنشین و کم‌پردازی عوامل آلودگی آب‌های جاری و زیرزمینی هستند. یکی از مهم‌ترین عوامل آلودگی ترکیبات آل حلقه و یادگاری هسته‌ای که از طریق دفع پساب‌های تصفیه صنایع نفت و گاز و پتروشیمی، صنایع رنگ و پلاستیک و چسب، نیازی به وارد محیط‌های آبی می‌شود. ترکیبات حلقه و یادگاری این مواد می‌تواند به‌وجود آید. ترکیبات آل حلقه و یادگاری، این مواد می‌تواند به‌وجود آید در آب‌های زیرزمینی نفوذ کرده و باعث آلودگی آب‌های زیرزمینی نیز شود. لذا راه حل‌گیری از این آلودگی تعیین‌شده است.

محله تحقیقات

که منجر به افزایش میزان تولید تولوتن و کاهش هزینه تأمین آن شده‌اند. مهم‌ترین کاربرد تولوتن کاهش استفاده از سرب در بینی‌های انوکسی‌هاست. بعدها ملاحظات زیست‌محیطی افزایش تقاضای تولوتن به‌منظور استفاده در تولید بینین بدون سرب مشهور است. [1] تولوتن از ماده شیمیایی نسبتاً سبیل است و بخار آن در شرایط خاصی قابل استرخیابی است.

تولوتن رامی یا تولوتن به دو روش‌عمده فیزیکی-شیمیایی و زیست‌شناسی تفهیم کرده‌اند. از میان روش‌های شیمیایی-فیزیکی شیمیایی و شناسایی تولوتن در بیان داده‌ای نشانه‌برانگیز برای ترکیبات آلی مناسب به‌نظر می‌رسد. [1] در این زمینه تحقیقاتی بر روی پساب صنعتی منطقه شیمیایی (Shouba) کوپات انجام شد و با توجه به حضور ترکیبات خون بینین -کلرواکس، این پساب‌ها در دسترس این تولوتن و یا پساب‌های دیگر استفاده می‌شود. شناسایی تولوتن در سیستم‌های آب‌زیبایی می‌تواند به‌وجود آید در آب‌های زیرزمینی نفوذ کرده و باعث آلودگی آب‌های زیرزمینی نیز شود. لذا راه حل‌گیری از این آلودگی تعیین‌شده است.

شکل [1] انواع انتقال واکنش‌های زیست‌شناسی ترکیبات حلقه‌ای، به‌خصوص در سیستم‌های پیوندهای دو ماده است. با توجه به این که در روز گذشته این موارد در محیط، آسیب‌پذیری وارده بی‌کوست‌های آبی و در تانک‌های زندگی انسان، انجام مطالعات و تحقیقات اطلاعاتی از این انتقال به‌نظر می‌رسد. بررسی فراوانی در نتیجه نمایندگی و فراوان‌سازی نتیجه تکنیک‌ها برای کاهش تولوتن و تولوتن‌های قابل تولید دغدغه‌ای مطرح می‌باشد.

เครیاتور د. برودست و د. وزیکس است. با توجه به این که در روز گذشته این موارد در محیط، آسیب‌پذیری وارده بی‌کوست‌های آبی و در تانک‌های زندگی انسان، انجام مطالعات و تحقیقات اطلاعاتی از این انتقال به‌نظر می‌رسد. بررسی فراوانی در نتیجه نمایندگی و فراوان‌سازی نتیجه تکنیک‌ها برای کاهش تولوتن و تولوتن‌های قابل تولید دغدغه‌ای مطرح می‌باشد.
جدول ۲ : نوع مواد و تغییرات غلظت آنها در فاضلاب و رودی به واحد تخصصی زیست‌شناسی

<table>
<thead>
<tr>
<th>روش غلظت (mg/l)</th>
<th>نوع مواد و تقسیم‌بندی (mg/l)</th>
<th>منشأ غلظت</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 - 140</td>
<td>ماس شفاف</td>
<td>سیستم‌های زیست‌شناسی</td>
</tr>
<tr>
<td>75</td>
<td>ماس شفاف</td>
<td>سیستم‌های زیست‌شناسی</td>
</tr>
<tr>
<td>60</td>
<td>ماس شفاف</td>
<td>سیستم‌های زیست‌شناسی</td>
</tr>
<tr>
<td>40</td>
<td>ماس شفاف</td>
<td>سیستم‌های زیست‌شناسی</td>
</tr>
<tr>
<td>20</td>
<td>ماس شفاف</td>
<td>سیستم‌های زیست‌شناسی</td>
</tr>
<tr>
<td>10</td>
<td>ماس شفاف</td>
<td>سیستم‌های زیست‌شناسی</td>
</tr>
</tbody>
</table>

نکته: بیشتر در این زمینه ضروری به نظر می‌رسد تولرانت به ماده‌های ترکیب مواد‌های زیست‌شناسی خاصی نسبت به

۱. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۲. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۳. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۴. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۵. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۶. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۷. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۸. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۹. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۱۰. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۱۱. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۱۲. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و

۱۳. فازهای میکرو‌باتریا با درستی تولرانت و میکروب‌های هوازی و
نتایج و آزمایش‌ها
برای راه اندازی سیستم تصفیه زیست‌شناختی، از لین فعال برشکنی به استخر هوادی مرحله‌ای اول تصفیه خانه‌ای فاضلاب شهرک اکباتان استفاده شده است. ابتدا به هر یک از مراحل

<table>
<thead>
<tr>
<th>هفته</th>
<th>فاضلاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>88/6</td>
</tr>
<tr>
<td>3</td>
<td>88/9</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>81/9</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
</tr>
</tbody>
</table>

| جدول 3. تراز یافتن آزمایش‌های انگیزه هفته‌های افتتاحیه فاضلاب تولولت ورودی |
|-------------------------------|--------------------------------|
| بالداره حدف | فاضلاب تولولت در فضای‌های COD | میانگین بالداره حدف | گرم COD/m³ | میانگین بالداره حدف | گرم COD/m³ |
| (mg/l) | (mg/l) | | | | |
| 85 | 81 | 65 | 57 | 57 | 35 | 35 | 30 |
| 84 | 81 | 65 | 57 | 57 | 35 | 35 | 30 |
| 65 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |

| جدول 6. میزان ماده اهداف فضای‌های فضای زیستی |
|---|-----|
| میانگین بالداره حدف | گرم COD/m³ | میانگین بالداره حدف | گرم COD/m³ |
| (mg/l) | | (mg/l) | | |
| 85 | 84 | 65 | 64 | 64 | 64 | 64 | 64 |
| 65 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |

| جدول 5. فضاهای فضای‌های فضای زیستی |
|---|-----|
| میانگین بالداره حدف | گرم COD/m³ |
| (mg/l) | | |
| 85 | 84 | 65 | 64 | 64 | 64 | 64 | 64 |
| 65 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |

| جدول 4. میزان ماده اهداف فضای‌های فضای زیستی |
|---|-----|
| میانگین بالداره حدف | گرم COD/m³ |
| (mg/l) | | |
| 85 | 84 | 65 | 64 | 64 | 64 | 64 | 64 |
| 65 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| 64 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
پانوشت

1. microorganism

منابع