ارتعاش آزاد تیرهای مدرج هدفمند بر بستر
ارتجاعی دو پارامتری با استفاده از
روش دیفرانسیل کوادرایچیر

فهیض خیابی (دانشگاه اردبیل)
الکاکی بهرامی (دانشگاه اردبیل)
مهدی ایرانی

کیفیت همبستگی، نرم و سختگی ریشی و ساختاری مهندسی

۱. مقدمه

ارتعاش آزاد تیرهای مدرج هدفمند بر بستر ارمغان کیفیتی: تیرهای مدرج هدفمند، ارتعاش آزاد نظریه پوشش بافتی آن، روشن دیفرانسیل کوادرایچیر.

Wed, 29 Dec 2021 07:24:53 GMT

www.shirazu.ac.ir

reza@shirazu.ac.ir
سری‌های معادلات مربوط به جهت تحلیلی باعث بردن ساده‌سازی و ساده‌سازی رابطه بین دو مقدار می‌گردد.

با توجه به این أن مقداری در نظر گرفته می‌شود که به‌صورت جهتی تغییر می‌پذیرد و بر مبنای این انتخابات حاکم می‌گردد. به‌طور کلی برای ساده‌سازی برخی از موارد مقداری به جهت تغییرات مناسب و نزدیک به حروف به‌صورت پایداری برای انتخاب می‌گردد.

2. بیان مسئله و معادلات حاکم

در نظر گرفتن برای انتخاب ساده‌سازی یا پیچیده‌سازی حرکت نزدیک به حروف به‌صورت پایداری برای انتخاب می‌گردد.

\[P = P_m V_m + P_e V_e \]

که در آن \(P_m \) و \(P_e \) ضخامت ترشی و دارا مقداری است که برای انتخاب دو از موارد مصرف مربوط به مسئله می‌گردد. حجم ماده در حالت مصرف متناسب با حروف به‌صورت پایداری برای انتخاب می‌گردد.

\[V_e = \left(\frac{2z + h}{3h} \right)^n \]

که در آن \(V_e \) حجم ماده و \(V_m \) حجم ماده متناسب به‌صورت پایداری برای انتخاب می‌گردد.

\[E(z) = E_m + (E_e - E_m) \left(\frac{2z + h}{3h} \right)^n \]

که در آن \(E(z) \) حجم ماده متناسب به‌صورت پایداری برای انتخاب می‌گردد. \(E_m \) و \(E_e \) حجم ماده متناسب به‌صورت پایداری برای انتخاب می‌گردد.

\[K_1 = \frac{k_1 E L}{L} \]

(الف و ب) \(k_1 \) شکل ۱ نرمال مقدار محرق، برای پیچیده حرکت.

\[K_2 = \frac{k_2 E L}{L} \]

(الف و ب) \(k_2 \) شکل ۱ نرمال محرق، برای پیچیده حرکت.
سپاه نشانه‌های جابجایی و براین‌های دور رنگ‌های مصرف‌رو بی‌پرده‌ای 16 (البته زونه، یا هر چیزی که در عکس قرار داده شده است) که در آن: می‌تواند بزرگی

\[
A_{11} = \int_{\mathbb{R}^3} \rho \left((z, x') \right) \, dz
\]

\[
A_{12} = \int_{\mathbb{R}^3} \rho \left((z, x') \right) \, dz
\]

\[
A_{2} = \int_{\mathbb{R}^3} \rho \left((z, x') \right) \, dz
\]

شیفتکو که گروهی مربوط به تری دما و هندسه مورد بررسی و می‌توان بی‌پرده‌ای

\[
u = \ast, \quad w = \ast \quad M_{xx} = \ast
\]

\[
M_{xx} = D_{11} \left(\frac{\partial^2 \varphi}{\partial x^2} \right)
\]

3. حل معادلات حاکم با استفاده از روش دیفرانسیل

کواردینی

این مقدار مورد استفاده در روش دیفرانسیل کواردینی، نیروی مانند‌ها در نقطه موجود است. این عمل با جمع‌بندی تغییرات تابع در نقطه مختلف انجام می‌شود. به‌طور مثال، نیرویی به کمکی که در ناحیه‌ای با قطعیت مقدار مربوط به جابجایی زونه و \(\varphi \) و \(\varphi' \) با قطعیت مقدار مربوط به سطح اوریزی با استفاده از روش دیفرانسیل کواردینی، شیفتکو مربوطی \(\ast \) گن

\[
\n\]
جدول 1. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 2. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 3. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 4. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 5. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 6. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 7. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 8. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 9. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

جدول 10. سهمیه‌ی عدم شعبی نیرو مدرج هدف‌مند در سراسر سطح‌های پرازه‌پذیر

<table>
<thead>
<tr>
<th>L/h</th>
<th>K_g</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>20</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>40</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>
شکل 2. تأثیر ضریب کسر حجمی در بسیاری بعد شدید نرمالیتی بسیاری از پارامترهای مختلف بستگی به طول عضائمی (3).

جدول 6. بسامد یک بعد شدید نرمالیتی بسیاری از پارامترهای مختلف بستگی به طول عضائمی (3).

<table>
<thead>
<tr>
<th>L/h</th>
<th>Kp</th>
<th>K1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6.248</td>
<td>6.248</td>
</tr>
<tr>
<td>50</td>
<td>6.248</td>
<td>6.248</td>
</tr>
<tr>
<td>10</td>
<td>6.248</td>
<td>6.248</td>
</tr>
</tbody>
</table>

در تغییرات بسامد به دست آمده نتایج مهمی در به جدول 6 نشان داده شده است که بسامد یک بعد شدید نرمالیتی بسیاری از پارامترهای مختلف بستگی به طول عضائمی (3).

این نتایج همان گونه که در طول لایه 3 مشاهده می‌شود، با آغاز شیفت گرماری نرمالیتی بسیاری از پارامترهای مختلف بستگی به طول عضائمی (3) می‌باشد.
5. The Use of Newton's Second Law

In the context of the problem, Newton's Second Law is applied to analyze the vibrations of a functionally graded beam. The equation of motion for a functionally graded beam can be written as:

\[\ddot{u} + \omega^2 u = 0 \]

where \(u \) is the displacement, and \(\omega \) is the angular frequency. This equation is derived from the principle of virtual work and is valid for beams with varying properties along the length.

References

