# انتگرال گیری مستقیم نیمه‌صریح با پایداری نامشروط بر پایه ی روش آلفای تعمیم‌یافته

نوع مقاله : یادداشت فنی

نویسندگان

دانشکده‌ی مهندسی عمران، دانشگاه آزاد اسلامی، واحد مشهد

چکیده

رویکردهای انتگرال‌گیری عددی برای تحلیل دینامیکی را می‌توان به دو دسته‌ی صریح و ضمنی تقسیم کرد. پایداری و دقت، دو ویژگی مهم روش‌های اخیر هستند. از دیدگاه پایداری عددی، روش‌های مذکور به دو گروه پایدار مشروط و نامشروط دسته‌بندی می‌شوند. با وجود سادگی، روش‌های صریح پایدار مشروط هستند و حجم محاسبات نیز در روش‌های ضمنی، علی‌رغم پایداری نامشروط، به طرز چشمگیری زیاد است. در نوشتار حاضر، با بهره‌گیری از برتری‌های هر دو دسته، یک روش انتگرال‌گیری نیمه‌صریح نوین با پایداری نامشروط بر پایه‌ی روش آلفای تعمیم‌یافته ارائه شده است. این کار با وابسته کردن عامل‌های وزنی الگوریتم پیشنهادی به مشخصات سازه و استفاده از مفهوم ماتریس بزرگ‌نمایی انجام شده است. بر این اساس، عامل‌های وزنی نامعلوم به‌گونه‌یی محاسبه شده‌اند که معادله‌ی مشخصه‌ی
روش پیشنهادی با روش آلفای تعمیم‌یافته برابر شود. ویژگی مذکور، انطباق ویژگی‌های عددی روش نوین با روش آلفای تعمیم‌یافته را به دنبال خواهد داشت. درستی فرضیات و کارایی رابطه‌سازی پیشنهادی با تحلیل دقت، پایداری و حل پاره‌یی از نمونه‌های عددی انجام شده است. یافته‌ها، برتری روش پیشنهادی را نسبت به سایر روش‌های مشابه آشکار ساخته‌اند.

کلیدواژه‌ها

عنوان مقاله [English]

### Semi-explicit Unconditionally Stable Time Integration method based on Generalized-α technique

نویسندگان [English]

• J. Alamatian
F‌a‌c‌u‌l‌t‌y o‌f C‌i‌v‌i‌l E‌n‌g‌i‌n‌e‌e‌r‌i‌n‌g I‌s‌l‌a‌m‌i‌c A‌z‌a‌d U‌n‌i‌v‌e‌r‌s‌i‌t‌y o‌f M‌a‌s‌h‌h‌a‌d
چکیده [English]

In structural dynamic analysis, various time integration techniques have been proposed. Generally, these algorithms discretize the time domain into a finite number of intervals and approximate the displacements, velocities, and accelerations via mathematical expressions at each time increment. Based on the structure of these approximations, time integration schemes are classified as explicit and implicit. Explicit schemes are much simpler and often march forward only through pure vector operations. On the other hand, implicit strategies require more computational efforts especially in nonlinear behaviors since they involve solving a system of simultaneous equations at each time step using iterative techniques. Although computationally more expensive, implicit schemes are unconditionally stable, meaning that the growth of solution errors at each time increment remains bounded. On the contrary, explicit techniques suffer from instabilities which manifest as unrealistic growth of amplitude of the responses. To overcome this issue, time step size should be chosen small enough to meet the stability criterion. In this paper, by gathering the advantages of both approach, a new semi-explicit unconditionally stable time integration method based on the well-known implicit Generalized-α (G-α) technique is proposed. To this end, first, the fundamental approximating relationships of the suggested method is introduced for a single degree of freedom system with the unknown integration parameters. Then, using the concept of amplification matrix, these unknown parameters are determined so that the method possesses the same characteristic equation as the G-α technique. This leads to a set of model-dependent integration parameters that are no longer scalar constants. Due to this kind of formulation, similar stability and accuracy behavior are observed when comparing the proposed method with the G-α technique, both analytically and numerically. After generalization of the proposed algorithm to the multi-degree of freedom systems, some numerical examples are solved and comparisons are also made with other similar time integration schemes. Findings reveal the merits of the proposed algorithm over the other well-known time stepping techniques.

کلیدواژه‌ها [English]

• Dynamic analysis
• numerical integration
• Structure-dependent Method
• unconditional stability