شناسایی ترک در اعضای بتنی با استفاده از مدل‌های رمزگذار-رمزگشا بر پایه یادگیری عمیق

نوع مقاله : پژوهشی

نویسندگان

1 رئیس مرکز تحقیقات مهندسی زلزله / دانشگاه صنعتی شریف

2 دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

چکیده

شناسایی ترک از مسائل ضروری و بنیادی زمینه پایش سلامت سازه های مهندسی می باشد. این پژوهش به ارائه مدلی بر پایه ی یادگیری عمیق می پردازد که به واسطه آن بتوان فرآیند شناسایی ترک در سطوح بتنی را به صورت خودکار به انجام رساند. برای رسیدن به بیشترین دقت و همچنین کاهش زمان آموزش مدل، از آموزش انتقالی در رویکرد آموزش استفاده شده است. استفاده از انواع روش های داده افزایی کمک شایانی به توانایی مدل در مواجهه با شرایط تصویر برداری و نوفه های موجود در تصاویر داشته است. مدل مورد نظر با استفاده از یک مجموعه داده برچسب گذاری شده آموزش دیده و دقت نهایی براساس پارامتر ارزیابی اصلی پژوهش برابر 91/38% گزارش شد. روش موجود نسبت به روش های پیشین پردازش تصویر از دقت بسیار بالاتری برخوردار است و همچنین وجود انواع ترک در مجموعه داده مورد استفاده کمک می کند که مدل برای انواع ترک ها قابلیت تعمیم داشته باشد و از دقت و کیفیت بخش بندی آن کاسته نشود.

کلیدواژه‌ها


عنوان مقاله [English]

Crack detection in concrete members using encoder-decoder models based on deep learning

نویسندگان [English]

  • - - 1
  • Mohammad Mousavi 2
1 Head of Earthquake Eng. Research Center / Sharif University of Technology
2 Department of Civil Engineering. Sharif University of Technology. Tehran. Iran
چکیده [English]

Concrete is one of the major materials used in modern structures. Concrete members are used as the main structural part of various infrastructures such as dams, tunnels, bridges, and skyscrapers. However, this wide application requires some accurate and efficient inspection system during the structure’s life. Cracks are classified as the earliest symptoms of degradation in concrete members. Although, manual inspection is a common method in structural health monitoring and crack detection in civil engineering structures, yet serious limitations caused by implementing human resources degraded the efficiency of the proposed method. In recent years, many studies tried to automate the inspection of these structures by using different sensors such as Ultrasonic and Piezo-electric sensors which seems to be costly and insufficient in some cases. With recent development in computer vision techniques, especially deep-learning-based methods, there is an opportunity for researchers to come with autonomous visual inspection systems for structural health monitoring of concrete members. This study proposes a deep-learning-based model for automatic crack detection on the concrete surface. The proposed model is an encoder-decoder model which uses ResNet101, a well-known convolutional neural network, as the encoder and the U-Net’s expansion path as the decoder. To minimize the training time and maximize the accuracy, we use transfer learning in our approach. The dataset implemented for this study includes 458 images from the cracked surface of concrete members which come with corresponding segmentation label masks. Data augmentation techniques strongly increased the robustness of the proposed model encountering different imaging conditions and noises. The proposed model is trained using the backpropagation algorithm and achieved 99.39% Precision and 84.99% Recall which lead to a 91.38% F1 score on the unseen test dataset. The accuracy and speed of the present model outperform the existing methods and the different crack types compose the dataset helps generalization of model for prediction of different crack types and different imaging conditions.

کلیدواژه‌ها [English]

  • Structural Health Monitoring
  • Deep learning
  • Computer vision
  • Machine learning
  • Crack detection