روش سریع برای محاسبه تقیی ضریب بار بحرانی قابل‌های مستوی

علي کاو (استاد)
محمد رضا فریبرز (دانشجو)
دانشگاه بهنامی عمان، دانشگاه علم و صنعت ایران

در این نوشته‌ای از روی روش کار و انرژی برای سازه‌های قابل‌های مستوی تحت بار مشخص، ابتدا بر حسب بنزین و هیدروژن مکانیزم احتمال سازه، دو وضعکی و پیش‌برداری کار مواصل خامی داخلی سازه تعیین شده است. (منحنی کار خارجی (محور زاویه در زیر یا) در زیر این حالت بررسی می‌گردد.)

مقدرات پارامترهای و هندسی سازه، نمودار کار خارجی سازه، ناحیه از پارامترهای خارجی و مکانیزم احتمال سازه (براساس پوشش پیشنهادی) به دست آمده است. در جایی که این منحنی از دو حالت ناهماهنگی سازه مهندسی خواهد شد، از منحنی پارامتر بار 7 و تعداد منحنی‌ها

خمی‌رای سازه‌ها به هر انتها مشخص کردن.

بازگردن سازه‌ها عمل‌ها محاسبه مکانیزم‌های مختلف احتمال سازه و هم‌ستایه‌ای ضریب بار بحرانی سازه‌های با چهار بلوک مشکل و گاهی از نامکمل خواهد خورد. مثلاً برای یک قاب با

\[m = \frac{n}{5} \]

طلبیتی تعادل

\[m \sum_{n=1}^{n=7} \frac{1}{\sqrt{1+n^2}} \]

داده که بروزتی آنها و محاسبه ضریب بار مستطیل بررسی می‌شود.

مکانیزم‌های میان‌رده. از میان‌رده‌های ارته‌های ارته‌های کلیورم کانال مورد بهترین شناخته شده است. و ... از کارشناسان – خمیری استفاده می‌شود که در نهایت این مسئله با نگرفتن های بارهای کلی قابل حل خواهد بود.

بود. شاید دلیل اصلی اینکه یک روش تحمل خمیری در دوره مهندسی سازه‌ها چابگاه‌ها و اکثریت راه‌های استفاده از راه حل‌های کارشناسی - خمیری باشد. روش پیشنهادی در این نوع تنظیم، روش منحنی کار روش است به سبب گرایش کار در پیامدهای بار بحرانی و تعداد منحنی‌های خمیری سازه را هنگام اهدا و به‌کلی به موضوع بودن انتها سازه را با دقتی کافی تنظیم کرده تا توجه به شکل منحنی‌ها نیز می‌توان فقط ضعف و قوت سازه را تحت این بارگذاری

خاص مشاهده کرد.

علی‌الHAVANIECI، می‌شود روش‌های جبر‌برداری است که در آن‌ها بر دو مقدار نتیج علمی‌های آن نیز مؤثر است. محاسبه روی به دو موضوع می‌شود. جمهوری که در ادامه آنها می‌شود می‌شود روش‌های جبر‌برداری است که به‌طور خودآگاه و فقط این اداره کم‌کم مطابق خواهد خودآگاه که نسبت به

رشوه‌های جبرنی راهحل‌های ساده‌ریزی‌ریا برای این نوع قابل‌های تبیه

خواهد داد.
تعاریف

dاخلي بیشتر به ترتیب مقدار کار در نمودار کار داخلي مکانیزم

یک سازه با تعادل نقاط بحرانی \(N_e \) اینجا به فرض که تمام نقاط بحرانی یک تعادل دارد \(T_1 \) و \(T_2 \) و در مثال، معادله خاص را برای ساختن \(W_{mi} \) را بررسی ادامه دهد. نتیجه دارد که برای تعادل، به سمت بحرانی \(W_{mi} \) به یک نقطه تعادل به‌صورت می‌رود.

\[V = \frac{W_{mi}}{m} \times \theta \]

در نتیجه کار داخلي مکانیزم که تعادل در حالت سطحی عضو در ممان بودست می‌دهد. نتیجه گرفته می‌شود که تعادل در حالت سطحی عضو در ممان بودست می‌دهد.

\[\lambda = \frac{W_{max}(X_j)}{W_{max}(X_j)} \]

در محدودیتی از منحنی کار داخلي مکانیزم \(W_{min} \) به ترتیب و دستگاه‌ها، سازه مهندس خواهد شد. تعادل در حالت سطحی معنی‌داری ندارد. در صورت محاصلی برای بحرانی \(\lambda_c \) است که باید استفاده از روستی مختصات نقطه گذاری \(X_j \) برای تعیین \(\lambda_c \) از تعیین مقدار (کار داخلي بیشتر) برای کار خارجي بیشتر.

\[\lambda_m = \frac{A + B}{2} \]

در محدودیتی از منحنی کار داخلي مکانیزم \(W_{min} \) به ترتیب و دستگاه‌ها، سازه مهندس خواهد شد. تعادل در حالت سطحی معنی‌داری ندارد. در صورت محاصلی برای بحرانی \(\lambda_c \) است که باید استفاده از روستی مختصات نقطه گذاری \(X_j \) برای تعیین \(\lambda_c \) از تعیین مقدار (کار داخلي بیشتر) برای کار خارجي بیشتر.

\[\lambda_m = \frac{A + B}{2} \]

در محدودیتی از منحنی کار داخلي مکانیزم \(W_{min} \) به ترتیب و دستگاه‌ها، سازه مهندس خواهد شد. تعادل در حالت سطحی معنی‌داری ندارد. در صورت محاصلی برای بحرانی \(\lambda_c \) است که باید استفاده از روستی مختصات نقطه گذاری \(X_j \) برای تعیین \(\lambda_c \) از تعیین مقدار (کار داخلي بیشتر) برای کار خارجي بیشتر.

\[\lambda_m = \frac{A + B}{2} \]

در محدودیتی از منحنی کار داخلي مکانیزم \(W_{min} \) به ترتیب و دستگاه‌ها، سازه مهندس خواهد شد. تعادل در حالت سطحی معنی‌داری ندارد. در صورت محاصلی برای بحرانی \(\lambda_c \) است که باید استفاده از روستی مختصات نقطه گذاری \(X_j \) برای تعیین \(\lambda_c \) از تعیین مقدار (کار داخلي بیشتر) برای کار خارجي بیشتر.

\[\lambda_m = \frac{A + B}{2} \]
مثال 1: در این مثال سازه‌ی 3 درجه تابعی است و لذا بخشی به‌زای
4 مققل خمیی منهدم خواهد شد و دارای 5 نقطه‌ی بحرانی است. طبق روشی که در بخش 3 توضیح داده شد، مقادیر کارهای انجام شده بر حسب تعداد مققل‌ها محاسبه می‌شود.

شکل 1. شماتیک کلی قاب و بادگزاری آن را نشان می‌دهد: در شکل
2 نیز با توجه به اصول ذکر شده مکانیک کل قاب ترمیم شده است.
3 که با ضرب کردن مقادیر لگری خمیی اعضا در مقادیر دوران هر نقطه
4 بحرانی نمودار "کار داخلی مکانیزم" بدست خواهد آمد (شکل 3).

مقادیر کار داخلی هر نقطه بحرانی در شکل 3 مشخص شده است.
5 حال با توجه به انگک سازه در درجه نامنی است سپس به ازای حداکثر
6 مققل نایب‌الاول خواهد شد. نمودار کار از طبق توصیبات بخش
7 2 را به دست می‌آورد. مقادیر مکانیزم (شکل 4) همان‌گونه که در دیل امده است
8 از روی منحنی کار مقاقل نقطه‌ی نایب‌الاول دو منحنی "کار داخلی کمیته". و "کار خارجی بخشی" را به دست می‌آورد.

برای به دست آوردن منحنی نقطه‌ی نایب‌الاول باید مقاقل در نقطه
9 خط "کارداخلی کمیته" و "کار خارجی بخشی" را در ناحیه‌ی بیرونی دامنه و پاسخ اولیه مناسبی برای روی هایی مانند "الگویی رزینگ"
10 که نیاز به پاسخ اولیه دارد خواهد بود.

در صورتی که "کار داخلی بخشی" یک‌ویژگی را فطل کند، باید بررسی
11 کنیم که این مقاقل کار خارجی در اثر فضاهای مانند دریم معنی کار
12 خارجی بخشی (کار نیروی جابجایی روی هر گره) محاسبه می‌شود
13 که مفصل پای سیستم نظیر آن دوران بپذیرد. این نشان دهنده
14 این کار به دست آمده باشد که در طول عضو وارد شده است. در صورت
15 مقادیر کار داخلی بخشی، باید اصلاح شود و مقادیر آن تا نطفه کار داخلی
16 مファンی ادامه باید و مقادیرشان آن به نقطه تئوری مقاقل معنی
17 انتقال یافته به انگک سازه در طول عضو وارد شده است. این
18 مقاقل نشان دهنده کار خارجی بخشی که در طول عضو وارد شده، اگه
19 سازه در حین قسمت هسته‌ای خواهد شد (انهدام موضعی) و پایه
20 نظیر آن با عوامل پاسخ سعیه در نظر گرفت.

فرضیات
1. از تغییر شکل‌های کنتنسانی عضو تظر شده است.
2. تغییر زاویه‌ی ناشی از ایجاد مقاقل‌های خمی (\(\theta\)) به‌نرمی کافی
3. کوچک است، طولی که \(L \times \cos \theta \cong L \times \sin \theta \cong \theta\).
4. 3. هنگامی که سازه را درجه نامنی به مکانیزم بکه درجه
5. آزادی حرکت نیمه‌شروعی که در طول عضو وارد شده است
6. شده است.
7. کار نیروی وارد در طول اعضا زمانی محاسبه می‌شود که نقطه‌ی
8. بحرانی زیر آن تبدیل به مقاقل خمی شده است.
9. کار نیروی جابجایی روی هر گره محاسبه می‌شود که مفصل پای
10. سیستم نظیر آن دوران بپذیرد.
11. ترتبیه شکل مفصل‌ها برای کار خارجی بخشی به ترتیب توزیع
12. مقادیر کار داخلی مکانیزم
13. خواهد بود.

مقادیر \(\theta\) که در نمودار مکانیزم کل و کارهای نشانه شده منظور تغییر
14. زاویه‌ی نسبت به حالت اولیه است به اندازه‌ی حدود را می‌تواند.

مثال‌ها
15. در این بخش، 7 مثال مختلف برای مولفه‌های عضوی که در پایان
16. هگل مقدار \(\theta\) به دست آمده از این روش با جواب‌های موجود
17. مقایسه شده است.
مقدار کار نیایهی حرارتی در شکل 7 مشخص شده است. حال با توجه به آن که سازه 2 درجه نامیم است، بازاید خاکریک 3 مفصل ناپدید خواهد شد. نمودار کار را طبق توضیحاتی که در پایان فصل 8 باره سازه ترسیم می‌کنیم (شکل 8). چنان که خواهیم دید از روش برای محاسبه‌ی مقادیر بار خارجی بیشتری را در آن نقطه محاسبه می‌کنیم.

\[
\begin{align*}
Y_{\text{min}} &= 30 \times X - 90 \\
\Rightarrow X_j &= 3/5 \\
Y_{\text{max}} &= 10 \times X + 10 \\
Y_{\text{max}}(X_j) &= 5 \\
Y_{\text{max}} &= 15 \times X + 30 \Rightarrow Y_{\text{max}}(X_j) = \frac{82.5}{5} = 16.5
\end{align*}
\]

که با پاسخ موجود در نتایج (\(\lambda = 18/8\) به خویی مطابقت دارد) و با محاسبه‌ی مقادیر \(\lambda\) برای نقاط A و B که از تقسیم کردن دو مقادیر کار داخلی و خارجی بیشتری برکار خارجی بیشتری در آن نقاط بسته می‌آید خواهیم داشت:

\[
\begin{align*}
\lambda_A &\leq \lambda_c \leq \lambda_B \Rightarrow 2 \leq \lambda_c \leq 18/8 \\
\lambda_m &= \frac{\lambda_A + \lambda_B}{2} \Rightarrow \lambda_m = \frac{2 + 18/8}{2} = 1.9
\end{align*}
\]

که این مقادیر، دامنه‌ی جواب‌های ابتدایی بسیار خویی برای روش هایی (مانند هایزنو و زنگیک) است که احتمال به مقدار اولیه دارد. مثال 2: سازهی نشان داده در شکل 5، دو درجه نامیم است، و بازاید خاکریک 3 مفصل خمیری مهند سازی شده و دارای 5 نقطه‌ی بحرانی است. طبق رویه که در بالا توضیح داده شد، مقدار کارهای انجام شده را بررسی می‌کنیم. سپس خواهیم کرد شکل 8 منحنی کار قاب در مثال 6.

\[
\begin{align*}
W_{\text{max}} &= -3/3 \\
W_{\text{min}} &= -3/3 \\
W_{\text{max}} &= -3/3
\end{align*}
\]
منحنی کار مقدار نقطه تلاقی دو منحنی "کار داخلی کمیته" و "کار خارجی بیشینه" را به دست می‌آوریم. برای بدست آوردن مختصات نقطه تلاقی ابتدا معادلهٔ دو خط "کار داخلی کمیته" و "کار خارجی بیشینه" را در ناحیهٔ بیرونی از خط حدیست آورد. سپس "مقدار کار داخلی بیشینه" و "کار خارجی بیشینه" را در نقطه محاسبه می‌کنیم.

\[
\begin{align*}
\gamma_{\min} &= \frac{48^\circ}{X - 48^\circ} \\
\gamma_{\max} &= \frac{20^\circ}{X + 4^\circ}
\end{align*}
\]

\[
\begin{align*}
y_c(\gamma) &= \frac{28^\circ}{X + \frac{95^\circ}{2}} \\
y_i(\gamma) &= \frac{28^\circ}{X + \frac{95^\circ}{2}} \\
\end{align*}
\]

\[
\lambda_c = \frac{2488.54}{28.5} = 84.00
\]

که با پاسخ موجود در تحقیقات (\(\lambda_c = 240\)) به‌طور مناسب‌تر

از آنجا که نقطه B خارج از حدودی استاتیکی سازه قرار دارد، نمی‌توان ضرب بر آن را محاسبه کرد و فقط با محاسبه ضریب زاویه f بار A و از تقسیم مقدار کار داخلی بیشینه بر کار خارجی بیشینه در این نقطه خواهیم داشت:

\[
\lambda_A \leq \lambda_c \Rightarrow \frac{240}{84.00} \leq \lambda_c
\]

مثال 3: سازه‌ی نسبی‌داده شده در شکل 19، شش درجه ناحیه است. پس بیشینه دارای 7 مفصل خمیزی منهد خواهد شد و دارای 12 نقطهٔ خریدی است. طبق روشتی که پیشتر توضیح داده شد مقدار کارهای انجام شده به‌حسین مقدار تست‌ها محاسبه خواهد شد. شکل 9، شماره کلی قاب و پیوستگی آن را نشان می‌دهد، در شکل

10 با توجه به اصول باد شده، مکانیزم کلی قاب ترسیم شده است که...

![Diagram](image)
خط \(\bar{X} \) به دست آورده \(X_r \) سیس مقدار \(\bar{X} \) و \(\bar{X} \) در آن نقطه محاسبه می‌کنیم.

\[
\begin{align*}
\lambda_{\max} &= \frac{18X - 18}{18} \\
\Rightarrow X_j &= 6 \\
\lambda_{\max} &= \frac{18X + 36}{18} \\
\Rightarrow y_{\max} &= \frac{18X + 36}{18} \\
\lambda_c &= \frac{\lambda_{A} + \lambda_{B}}{2} = \frac{\lambda_{A} + \lambda_{B}}{2}
\end{align*}
\]

که با پاسخ موجود در تحقیقات \(1/8 \). \(\lambda_c \) (\(\lambda_c \)) یکسان است.

\[\lambda_c = 1/8\]

مثال 4: شرایط نشان داده شده در شکل 13. شایع درجه نامعین است. سپس بیشتر به‌رژایی یک مفصل تخریبی محدود‌سازی و داده شده در شکل 13 مشابه کلی قابل وارگذاری آن را نشان می‌دهد. در سه شکل 14 با توجه به آن اصولی باید مکانیزم کل قابل ترسیم شده است. که با پربند کردن مقدار تخریبی اعضا در مقدار دوانه هر نقطه به‌رژایی نمودار‌کار داخلي مکانیزم با دید خواهند آمد (شکل 15). مقدار گرند نقطه‌ی بین‌یابی در شکل 15 مشخص شده است. حال اگر توجه به آن کرده و سازه درجه نامعین است، سپس بیشتر حداکثر 7 مفصل نایاب‌سازی خواهند شد. نمودار کار را طبق توضیحاتی که در بالا گفته شد برای این سازه ترسیم می‌کنیم (شکل 16). چنانچه در ادامه آمده است، از روش منحنی کار مقدار نقطه تلاقی می‌توانند \(\bar{X} \) (شکل 15) را به دست آورده.

\[
\begin{align*}
\lambda_{\max} &= \frac{18X - 18}{18} \\
\Rightarrow X_j &= 6 \\
\lambda_{\max} &= \frac{18X + 36}{18} \\
\Rightarrow y_{\max} &= \frac{18X + 36}{18} \\
\lambda_c &= \frac{\lambda_{A} + \lambda_{B}}{2} = \frac{\lambda_{A} + \lambda_{B}}{2}
\end{align*}
\]

که با پاسخ موجود در تحقیقات \(1/8 \). \(\lambda_c \) (\(\lambda_c \)) یکسان است.

\[\lambda_c = 1/8\]
شکل 16. منحنی کار قاب در مثال 4.

شکل 17. قاب در نهایت پک طبقه.

شکل 20. منحنی کار قاب در مثال 5.

شکل 18. مکانیزم کل قاب در مثال 5.

شکل 19. نمودار کار داخلی مکانیزم.

ضریب باز A می‌توان یک کران برای λ به‌دست آورد. که از تقسیم مقدار کار داخلی بیشتر یا کمتر از شرایط بینهایت در این نقطه خواهیم داشت.

\[\lambda_A \geq \lambda_c \iff 1/95 \geq \lambda_c \]

مثال 5: سازه شان داده شده در شکل 17، شب درجه نامی وارد است پس بیشتر یا کمتر از 7 مفصل خرمی مهندسی خواهد شد و دایر 11 نقطه بیرونی است. طبق روش که پیشتر توضیح داده شد مقدار کارهای اینجا باید حسب تعادل مفصل‌ها محاسبه شود.

شکل 17، نشان می‌دهد که:

\[y_{\max} = 150X + 100 \]

\[y_{\min} = 340X - 640 \]

\[\Rightarrow X_j = 10/334 \]

\[y_{\max}(X_j) = 179/1 \]

\[y_{\min}(X_j) = 450/1 \]

\[\lambda_c = \frac{260/1}{179/1} = 1.454 \]

که با اندازه‌گیری نیرویی می‌باشد.

شکل 15. شب درجه بینهایت یک طبقه.

شکل 18. مکانیزم کل قاب در مثال 5.

شکل 19. نمودار کار داخلی مکانیزم.

شکل 20. منحنی کار قاب در مثال 5.

شکل 17. قاب در نهایت پک طبقه.

شکل 16. منحنی کار قاب در مثال 4.

شکل 18. مکانیزم کل قاب در مثال 5.

شکل 19. نمودار کار داخلی مکانیزم.

شکل 20. منحنی کار قاب در مثال 5.
بیشتر برای محاسبه نشان‌یابی ضریب بار...

از آنجا که نقطه B خارج از محدوده استاتیکی سازه قرار دارد، نمی‌توان ضریب بار نظیر آن را محاسبه کرد و فقط با محاسبه ضریب B از نقطه A به دست آورد. که از تقسیم مقدار کار داخلی بیشینه بر کار خارجی بیشینه در این نقطه خواهیم داشت:

\[\lambda_A \geq \lambda_c \Rightarrow 1/\lambda_A \leq \lambda_c \]

مثال 6: سازه نشان داده شده در شکل 21 هیچ‌چیز درجه نامعین است. پس بیشینه برای 19 مقابل خیلی مهم و بهتر شد ودارای نقطه قرار دارد. طبق روشی که پیشتر توضیح داده شد مقدار کار داخلی از شکل 22 مشخص شده است. اگر به شکل 21 شماگل کلی قاب با یاربیژی آن را ندارید می‌دهید. در شکل 22 نیز با توجه به اصول درجه شش مکانیزه کل قاب ترسیم شده است.

که با ضرب کردن مقدار لگر خیلی از اعضای مقادیر دوران در نقطه بیشینه پیش‌تر نمودار (کار داخلی مکانیزه) به دست خواهد آمد (شکل 23). مقدار کار در هر نقطه بیشینه در شکل 23 مشخص شده است.

حال با توجه به این که سازه 18 درجه نامعین است پس به‌راهی جدیتر 19 نقطه نیاز دارد. نمودار کار را طبق توضیحاتی که پیشتر گذشته باید از نظر ترسیم می‌کنیم در شکل 24. در ادامه به‌صورتی که شکل 25 چگونه کار داخیل مکانیزه و/یا کار خارجی بیشینه را به دست آوریم. باید به‌صورت آوردن مختصات نقطه نقطه تلاقی ابتدا معادله‌های دو خط کار داخلی کمیته و/یا کار خارجی بیشینه را در ناحیه برخورد دو خط به دست آوریم و سپس مقدار کار داخلی بیشینه و کار خارجی بیشینه را در آن نقطه محاسبه می‌کنیم.

\[\begin{align*} y_{i_{\text{min}}} &= 4X - 16 \\ \Rightarrow X_j &= 14/63 \\ y_{e_{\text{max}}}(X_j) &= 44/52 \\ y_{\text{max}} &= 4X + 24 \Rightarrow y_{i_{\text{max}}}(X_j) &= 82/52 \end{align*} \]

\[\lambda_c = 82/52 = 1/441 \]

که با پاسخ موجود در تحقیقات \(\lambda_c = 1/476 \) مطابقت خوبی دارد.

با مختصاتی مقدار B برای نقطه A به دست آورده. کار داخلی بیشینه بر کار خارجی بیشینه در این نقطه به دست می‌آید.
در ادامه یادآوری خواهیم شد که چگونه می‌توانیم از روی نقاطی، مقادیر نقطه تلاقی دو منحنی «کار داخلي کمینه» و «کار خارجی بیشینه» را به‌دست آوریم.

شکل 27، نمودار کار داخلی مکانیزم.

$$y_{c_{\text{min}}} = \frac{1}{2} X - \frac{18}{4}$$

$$\Rightarrow X_1 = 38.75$$

$$y_{c_{\text{max}}} = 0.42 X + 18.5$$

$$y_{c_{\text{max}}}(X_1) = 33.65$$

$$y_{c_{\text{max}}} = \frac{1}{2} X + 18.5 \Rightarrow y_{c_{\text{max}}}(X_1) = 55.15$$

$$\lambda_c = \frac{45.3}{27.75} = 1.63$$

که با پاسخ موجود در تحقیقات (1976) مطابق خویی دارد. (15)

از آنجا که نقطه B در خارج از محدودی استاتیکی سازه قرار دارد، نمی‌توان ضرب بار نظر آن را محاسبه کرد و فقط با محاسبه ضرب بار A می‌توان یک کران برای $y_{c_{\text{max}}}$ به‌دست آورد. از تقسیم مقدار ضرب بار A، $y_{c_{\text{max}}}$ به‌دست آمده.

شکل 25، قاب در هنگام نش طبقه.

شکل 26، نمودار کار داخلی مکانیزم.
روش سریع برای محاسبه تریبی ضرب بار...\[[X_0] \leq N_p \leq [X_f] + 1 \]

\[X_f \] چنانچه مقادیر \(X_f \) عدد صحیح باشد، مقادیر \(X_{mn} \) کلی خواهد بود. و در صورتی که از آن کوچک‌تر باشد باشد پایه روند تشکیل فضای خمیری بر اساس گار خارجی بیشتر آن توصیه‌گر.

\[X_{mn} \] چنانچه مقادیر \(X_{mn} \) از دیدگاه نظریه آنگاه مقادیر \(X_f \) یا دقت قابل قبولی وجود است.

\[A_a \leq \lambda_c \Rightarrow \frac{1}{\lambda_a} \leq \lambda_c \]

نتیجه‌گیری

1. به اینکه اساس این روش بر سریع کار داخیلی اساس و کار نیروی خارجی است، هر چه از این ایستادگی لگ نخرسی متقابلی گزیندگی بیشتر با داشتن فضای بیشتر محاسبه مناسب‌تر.

2. هنگامی که مقادیر \(X_f \) برای خوراک عدد صحیح باشد، مقادیر \(X_f \) محاسبه شده ضریب خواهد بود و مقادیر \(X_f \) برای تعداد فضای خمیری سازه در موقع اهمام خواهد بود.

منابع

