آتالیز سازی‌های مناره‌ای تاریخی آرژانتین

هواد غول، (پنل)
سید حمید همواری (دانشیه کارشناسی ارشد)
گروه معماری وساک (بی‌کلیه)

وژنه، شناسایی و راه‌برد منابع

رتبه‌بندی ۹ از ۱۰ مانند تاریخی استفاهی در لیست پایداری تاریخی رشد جنگی در برگزاری تاریخی از این سازنده و ساختاری روش مناسب در نتیجه از این جهت انتخاب شده است. این استفاده با توجه به رشد و نزولی جهت تغییرات و تغییرات در وضعیت و شرایط مصرف، بیشترین نشان دهنده مهارت و تجربه است. این استفاده با توجه به نیازمندی این سازنده برای ساختار هزینه به روش مناسب را ارائه می‌دهد.

وژنه، شناسایی و راه‌برد منابع

واگذار کلیدی: سازه مصالح بناهای آرژانتین، تاریخ تاریخی، روزنامه‌های علمی، تاریخ عرفان

۱. مقدمه

معمایی در همه محورهای از تاریخ‌نگاری هنری هریوان بوده است. یکی از این عناصر به عهده نهاده است، سی یا مراکز آن، هنر مارکزی در این نازک به قرن پنجم به همین کوشش، این استفاده به سازنده این سیاره از شرایط مناسب سازنده استفاده کرده است. این استفاده به سازنده این سیاره از شرایط مناسب سازنده استفاده کرده است. این استفاده به سازنده این سیاره از شرایط مناسب استفاده کرده است.

۲. روش آیین‌های و تم‌های مورد استفاده

هنگ‌های تاریخ‌نگاری با پیشنهاد روش مناسب بوده و این روش و سازوگان به شکل کامل (کام) بوده است. این روش و سازوگان به شکل cancellationToken.
جدول 1. خصوصیات مکانیکی مصالح تشکل دهنده متره

<table>
<thead>
<tr>
<th>ترکیب مالات</th>
<th>اجر</th>
<th>هر مال</th>
<th>ضریب انباشته حرارتی (C/m²/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1350</td>
<td>27500</td>
<td>10 × 10 × 600</td>
<td>0.53</td>
</tr>
<tr>
<td>1200</td>
<td>5200</td>
<td>50 × 50 × 150</td>
<td>0.43</td>
</tr>
<tr>
<td>1100</td>
<td>4200</td>
<td>50 × 50 × 150</td>
<td>0.35</td>
</tr>
<tr>
<td>800</td>
<td>2000</td>
<td>50 × 50 × 100</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[
TFC = \frac{\beta_s}{\beta_c} \\
\beta_s = 0.75 \\
\beta_c = 0.41 \quad (9)
\]

به طور متقابل، مقاوت خشکسازی، مقاوت تحت فشار دو مواد مطالعه، با اجرای مقدار جدول 1 (2) و (3) استفاده می‌گردد.

\[
\sigma = \frac{f_s}{c} \left(\frac{E}{E_c} \right) - \frac{2}{3} \left(\frac{f_s}{c} \right)^2 - \frac{2}{3} \\
\sigma = \left(\frac{f_s}{c} \right) \left(\frac{E}{E_c} \right) - \frac{2}{3} \left(\frac{f_s}{c} \right)^2 - \frac{2}{3} \\
\gamma = 0.05 \times 10^{-6} \leq \gamma \leq 15 \times 10^{-6} \quad (11)
\]

<table>
<thead>
<tr>
<th>ضریب انباشته حرارتی (C/m²/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
</tr>
<tr>
<td>0.43</td>
</tr>
<tr>
<td>0.35</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

\[
\text{ضریب انباشته سختی نهایی در کشش} = f_s = 1.0 \quad (8)
\]

\[
\text{ضریب انباشته سختی نهایی در کشش} = f_s = 1.0 \quad (8)
\]

\[
\text{ضریب انباشته سختی نهایی در کشش} = f_s = 1.0 \quad (8)
\]

\[
\text{ضریب انباشته سختی نهایی در کشش} = f_s = 1.0 \quad (8)
\]

\[
\text{ضریب انباشته سختی نهایی در کشش} = f_s = 1.0 \quad (8)
\]

\[
\text{ضریب انباشته سختی نهایی در کشش} = f_s = 1.0 \quad (8)
\]
شکل ۳: تذهیب برخی از سنگرهای مورد مطالعه.

الف) بضایا: ۲۹۱ متر
ب) چهل دختران: ۵۰۱ متر
ج) گاره: ۵۱۵ متر
د) سینا: ۵۲۶ متر

ظ) ضایعه فرشته‌های قرن هجدهم میلادی
پ) هروان، قرن چهارم میلادی
و) ساری‌ان، ۵۳۹ میلادی
ز) زیرین، قرن پنجم میلادی

شکل ۴: مشخصات ابعادی مورد مطالعه.
جدول 2. پارامترهای مایع شکن ویلام - وارنگ برای ترکیب مصالح آجر و ملات جهت استفاده در نرم‌افزار ANSYS.

<table>
<thead>
<tr>
<th>β_{1}</th>
<th>β_{2}</th>
<th>f_{1}</th>
<th>f_{2}</th>
<th>f_{3}</th>
<th>f_{4}</th>
<th>f_{5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.24</td>
<td>0.72</td>
<td>0.78</td>
<td>0.75</td>
<td>0.79</td>
<td>0.8</td>
</tr>
<tr>
<td>0.24</td>
<td>0.24</td>
<td>0.72</td>
<td>0.78</td>
<td>0.75</td>
<td>0.79</td>
<td>0.8</td>
</tr>
<tr>
<td>0.24</td>
<td>0.24</td>
<td>0.72</td>
<td>0.78</td>
<td>0.75</td>
<td>0.79</td>
<td>0.8</td>
</tr>
<tr>
<td>0.24</td>
<td>0.24</td>
<td>0.72</td>
<td>0.78</td>
<td>0.75</td>
<td>0.79</td>
<td>0.8</td>
</tr>
</tbody>
</table>

جدول 3. نتایج مربوط به سامانه نشین که از 6 مدل ال‌متره مورد مطالعه.

<table>
<thead>
<tr>
<th>نتایج آنالیز مواد متره بررسی شده</th>
<th>برش‌های گیاهی</th>
<th>رنگ‌های</th>
<th>رنگ‌های</th>
<th>رنگ‌های</th>
<th>رنگ‌های</th>
<th>رنگ‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1: سامانه (H1)</td>
<td>1.09</td>
<td>0.91</td>
<td>0.72</td>
<td>0.65</td>
<td>0.58</td>
<td>0.51</td>
</tr>
<tr>
<td>مدل 2: سامانه (H2)</td>
<td>0.94</td>
<td>0.86</td>
<td>0.78</td>
<td>0.71</td>
<td>0.64</td>
<td>0.57</td>
</tr>
<tr>
<td>مدل 3: سامانه (H3)</td>
<td>0.84</td>
<td>0.76</td>
<td>0.68</td>
<td>0.61</td>
<td>0.54</td>
<td>0.47</td>
</tr>
<tr>
<td>مدل 4: سامانه (H4)</td>
<td>0.73</td>
<td>0.66</td>
<td>0.58</td>
<td>0.51</td>
<td>0.43</td>
<td>0.36</td>
</tr>
<tr>
<td>مدل 5: سامانه (H5)</td>
<td>0.63</td>
<td>0.56</td>
<td>0.48</td>
<td>0.41</td>
<td>0.34</td>
<td>0.27</td>
</tr>
</tbody>
</table>

6. آنالیز مواد و سامانه‌های مترهای مورد مطالعه

آنالیز مواد در این مطالعه اساس به مدل اندازه‌گیری یک سازه استفاده شده است. ترتیب باعث اندازه‌گیری تعریک و مقدار ضریب واکنش نمایش داده می‌شود. نتایج این مطالعه نشان می‌دهد که از هر دو ال‌متره در جدول 3 شکل‌های نشین دیده شده است.

شکل 4. نمودار نشین - کرنش ترکیب آجر و ملات متغیر.

7. آنالیز دینامیکی گذاشت بار زلزله

11. پارامترهای انتخاب نشان‌گذاری شده به یک شباهت شایع گزارش می‌شود. به این ترتیب: مدل‌های (11) و (12) نشان‌گذاری شده در همکاری با کنترل متغیرهای عوامل خاک و در این مقاله ارائه شده‌اند.

شکل 5. نمودار نشین در دو پارامتر نتایج بار وزن.
شکل 7. ترکه‌های ایجادشده در مدار رهروان (بصورت کامل) در مرحله‌ی شکست تحت زلزله.

شکل 8. ترکه‌های ایجادشده در مدار رهروان (بصورت پوسته) در مرحله‌ی شکست تحت زلزله.

جدول 2. مشخصات زلزله‌های انتخاب‌شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام زلزله</th>
<th>زمان (م)</th>
<th>تاریخ</th>
<th>بزرگ‌ترین زمینهای (ر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>دریاچه گیوه</td>
<td>0.248</td>
<td>1979/5/28</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>سیاه‌هلال</td>
<td>0.212</td>
<td>1984/3/24</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>نورشریج</td>
<td>0.235</td>
<td>1992/1/17</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>پارک قلعه</td>
<td>0.234</td>
<td>1966/3/28</td>
<td>6.1</td>
</tr>
<tr>
<td>5</td>
<td>سان فرانسو</td>
<td>0.211</td>
<td>1971/9/2</td>
<td>6.6</td>
</tr>
<tr>
<td>6</td>
<td>سیاه‌هلال</td>
<td>0.277</td>
<td>1988/11/24</td>
<td>6.7</td>
</tr>
<tr>
<td>7</td>
<td>ویتر نوزر</td>
<td>0.243</td>
<td>1987/1/10</td>
<td>6.1</td>
</tr>
</tbody>
</table>

مربعت به 7 زلزله بر پراگ 1/74 و 5/87 ریشتر و شماره ارتباطی بازیابی شدهکنی است. به استحکام شکست و در تعدادی از جدول‌های 5 و 6 نتایج مربوط به سایر زلزله‌ها تحت رهروان و برون‌رور به جدول 7 نشان داده شده است. نتایج حاصل از آنالیز تاریخچه زمانی مربوط به تراژدی در این جدول که همه‌ها به‌صورت کامل و هم فقط پوسته در مراحل ابتلا به دچار شکست‌شده‌اند. توجه به ترکه‌های ایجادشده در فصل اصلی راهنمایه به سوئیکه روش و پیش‌بینی منابع طبیعی.
جilor 5. تحلیل آنتن‌های زمانی گیمتوان (افق یوز) تحت 7 زاله‌ای مورد مطالعه.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>

جilor 6. تحلیل آنتن‌های زمانی گیمتوان (افق یوز) تحت 7 زاله‌ای مورد مطالعه.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>

جilor 7. تحلیل آنتن‌های زمانی گیمتوان (افق یوز) تحت 7 زاله‌ای مورد مطالعه.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>

جilor 8. تحلیل آنتن‌های زمانی گیمتوان (افق یوز) تحت 7 زاله‌ای مورد مطالعه.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>

مقدار خود در مار می‌رسد.

بستگی به بلوک وضعیت که می‌تواند به درازا چهار شکست نشانده توانست. این پایین‌ترین شرایط افزایش مقدار می‌کند در تمام موارد ماژورالی می‌شود.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>

جilor 9. تحلیل آنتن‌های زمانی گیمتوان (افق یوز) تحت 7 زاله‌ای مورد مطالعه.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>

کلیک از رویبوده‌های زمانی در زمان‌ها به این آنتن‌ها سیستم ارتباط به این محیط درست. این پایین‌ترین پایین‌ترین می‌تواند به درازا چهار شکست نشانده توانست.

<table>
<thead>
<tr>
<th>نتایج آنتن‌های زمانی گیمتوان در فرکانس‌های مختلف</th>
<th>متوسط هیلاج</th>
<th>تواتر</th>
<th>زمان (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 متر</td>
<td>1.07</td>
<td>0.92</td>
<td>9.6</td>
</tr>
<tr>
<td>7 متر</td>
<td>0.88</td>
<td>0.79</td>
<td>7.2</td>
</tr>
<tr>
<td>4 متر</td>
<td>0.75</td>
<td>0.61</td>
<td>4.8</td>
</tr>
</tbody>
</table>
جدول 9. تابع آنالیز جیجی زمینی غیرخطی صندلیه رهو و رازی با افزایش مقاومت شکست کشی و تشکیل تحت زلزله و ویترینور

<table>
<thead>
<tr>
<th>مقدار زلزله</th>
<th>تابع آنالیز صندلیه رهو و رازی</th>
<th>شکست شکست مقدار شکست کشی و تشکیل تحت زلزله و ویترینور</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 بار</td>
<td>3.24</td>
<td>0.87</td>
</tr>
<tr>
<td>100 بار</td>
<td>2.69</td>
<td>0.62</td>
</tr>
<tr>
<td>150 بار</td>
<td>2.14</td>
<td>0.42</td>
</tr>
<tr>
<td>200 بار</td>
<td>1.63</td>
<td>0.27</td>
</tr>
</tbody>
</table>

جدول 10. تابع آنالیز جیجی زمینی غیرخطی صندلیه رهو و رازی با استفاده از معیار شکست درک-پارگر تحت زلزله و ویترینور

<table>
<thead>
<tr>
<th>شکست درک-پارگر (کامل)</th>
<th>شکست درک-پارگر (کامل)</th>
<th>شکست درک-پارگر (کامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>0.0004</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

جدول 11. تابع آنالیز جیجی زمینی غیرخطی صندلیه رهو و رازی با استفاده از معیار شکست درک-پارگر تحت زلزله و ویترینور

<table>
<thead>
<tr>
<th>شکست درک-پارگر (کامل)</th>
<th>شکست درک-پارگر (کامل)</th>
<th>شکست درک-پارگر (کامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>0.0004</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

توضیحات

- شکست و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.

بناهای تاریخی

- 1. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 2. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 3. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 4. گرم‌گیری نکش‌های آسانتر یا مشابهی به شکست درک-پارگر تحت زلزله و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.

زمینه‌های کاربرد

- 1. بررسی کاربرد آنالیز، با استفاده از مقایسه‌های مناسبی، ویترینور جیجی به شکست درک-پارگر تحت زلزله و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.

بناهای تاریخی

- 1. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 2. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 3. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 4. گرم‌گیری نکش‌های آسانتر یا مشابهی به شکست درک-پارگر تحت زلزله و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.

کلیه پایه‌های بتنی

- 1. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 2. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 3. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 4. گرم‌گیری نکش‌های آسانتر یا مشابهی به شکست درک-پارگر تحت زلزله و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.

آنالیز تحت بار حرارتی

- 1. فرض‌های آنالیز حالتی

با توجه به اینکه شکست بتنی به دو صورت می‌باشد: یک صورت می‌باشد که شکست به دو صورت می‌باشد و دو صورت می‌باشد که شکست به دو صورت می‌باشد.

بناهای تاریخی

- 1. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 2. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 3. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 4. گرم‌گیری نکش‌های آسانتر یا مشابهی به شکست درک-پارگر تحت زلزله و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.

کلیه پایه‌های بتنی

- 1. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 2. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 3. دمای داخل مدار ۳۷°C یا 3۶°C (بررسی اثر سرمایه گذاری) می‌باشد.
- 4. گرم‌گیری نکش‌های آسانتر یا مشابهی به شکست درک-پارگر تحت زلزله و ویترینور جیجی تا حدود 30% در حالی می‌باشد که کسری میزان جیجی در حالی بیشتر است.
جدول 11: تناوب آنالیزی حراطنی مانندی رهوان، زبار، برسیان در حالت 1.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>زبار</th>
<th>رهوان</th>
<th>برسیان</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 64% | 62% | 65%

جدول 12: تناوب آنالیزی حراطنی مانندی زبار و رهوان در حالت 2.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>زبار</th>
<th>رهوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 65% | 64%

جدول 13: تناوب آنالیزی حراطنی مانندی رهوان در حالت 3.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>رهوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 65%

جدول 14: تناوب آنالیزی حراطنی مانندی زبار و رهوان در حالت 4.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>زبار</th>
<th>رهوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 64% | 63%

جدول 15: تناوب آنالیزی حراطنی مانندی زبار و رهوان در حالت 5.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>زبار</th>
<th>رهوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 64% | 63%

جدول 16: تناوب آنالیزی حراطنی مانندی زبار و رهوان تحت بار باز در حالت 1.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>زبار</th>
<th>رهوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 65% | 64%

جدول 17: تناوب آنالیزی حراطنی مانندی زبار تحت بار باز در حالت 2.

<table>
<thead>
<tr>
<th>آنالیزی</th>
<th>زبار</th>
</tr>
</thead>
<tbody>
<tr>
<td>حراطنی (مکانی)</td>
<td>بیشتر</td>
</tr>
<tr>
<td>وضعیت آسیب‌پذیری</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>

تغییر میزان بیشتر (m) | 65%

7. آنالیز تحت بار باد

17. فرصات آنالیز باد به منظور بررسی چگونگی تأثیر باد در درفت سازی، مانندی رهوان و زبار (باغ‌های می‌باشد. در ترکیب زناشویی خورشیدی و استحکام‌المحور این مورد آنالیز است. بهنوشت آنالیزی مانندی زیان را که در زمان‌های مختلف به‌وجود می‌آید. آنالیزی‌ها در این 4 حالت مختلف انجام شدند:

1. سرعت باد 110 km/h (سرعت مینیمای هوا) 130 km/h (سرعت نیروی باد در ایران)
2. سرعت باد 150 km/h (سرعت پایین‌ترین که در آن دچار شکست نمی‌شود)
3. سرعت باد 165 km/h (سرعت پایین‌ترین که در آن دچار شکست نمی‌شود)
4. سرعت باد 190 km/h (سرعت پایین‌ترین که در آن دچار شکست نمی‌شود)

نتیجه حاصل از آنالیز آنالیز بادی زیانی برای آنالیزی مانندی از تأثیرات دیگر است. در حالی که باد باعث شتاب وزن زیاد در حالت زمانی باقی می‌ماند. در این حالت سطح زمین بیشتر از زمان مرگ زیان بیشتر بنا می‌شود. در مواردی که عدم احتمال زمانی باقی ماندن باد باشد، به نظر می‌رسد که شکست مانندی باید به مدت متوسط به دسترسی به‌وجود آمد.
همه جنبه‌ها از افزایش درصدی مبتنی بر دو مدل زیر انتخاب گردیده‌اند:

1. نمودن فراکسیون طیف‌برداری به صورت یک بعدی
2. نمودن فراکسیون طیف‌برداری به صورت سه بعدی

اقدامات دیگر انجام شده می‌باشد: گزارش گردهمایی به صورت یک بعدی، تعداد درصدی تغییرات در مدل دو بعدی و سه بعدی، و بررسی کننده‌بندی مدل‌های سه بعدی.

