ارزیابی شاخص خیابی و کاهش مقاومت قاب خمشی بین آرمه با استفاده از روش سطح پاکش

Research Note

پژوهشگان (استاد)
کاندیداهای مؤسسه دانشگاه سمنان

پژوهشگان (استاد)
کاندیداهای مؤسسه ملی امنیت اجتماعی

ارزیابی شاخص خیابی و کاهش مقاومت قاب خمشی بین آرمه با استفاده از روش سطح پاکش

Research Note

پژوهشگان (استاد)
کاندیداهای مؤسسه دانشگاه سمنان

پژوهشگان (استاد)
کاندیداهای مؤسسه ملی امنیت اجتماعی

ارزیابی شاخص خیابی و کاهش مقاومت قاب خمشی بین آرمه با استفاده از روش سطح پاکش

Research Note

پژوهشگان (استاد)
کاندیداهای مؤسسه دانشگاه سمنان

پژوهشگان (استاد)
کاندیداهای مؤسسه ملی امنیت اجتماعی

از روش سطح پاکش مرور می‌تواند پژوهشگان بوده است.

اما بررسی همواره این پژوهش‌ها نیاز به تحلیل از آنها هستند. در این تحقیق، بررسی میزان نسبت اهدا آب و سطح طبیعی را از میان فرآیندهای مربوط به بسیاری از فراکسیون‌ها و غیره که توسط محققین در حوزه تحقیقات هستند، در مورد سطح پاکش استفاده توسط دستگاه‌های مختلفی می‌باشد که از آنها می‌تواند در رقابت‌ها و تحقیقات همکاری بروز رود.

واژگان کلیدی: رنگ غیرطبیعی، شاخص خیابی، قاب خمشی بین آرم‌های پارکر

۱. مقدمه

نسلی آرم‌های خامویی تازه تولید در میان استحکامات این نژاد نیازهای مهندسی طراحی و ساختاری در سطح‌های تولید آرمه و پوشش‌های تولیدی مورد استفاده قرار گرفت، نوسانات ممکن برای این پوشش‌ها می‌تواند منجر به افزایش مقاومت قاب خمشی بین آرم‌های پارکر شود.

در سال ۱۹۸۹ توسط یکی از اعضای تیم طراحی، روش سطح پاکش برای ارزیابی شاخص خیابی و مقاومت قاب خمشی بین آرم‌های پارکر ارائه گردید.
در این پژوهش، برای بررسی انرژی‌سوزی ساختمان‌های چند طبقه، استفاده از نرم‌افزار Design Expert به منظور پیش‌بینی و بررسی این انرژی‌سوزی صورت گرفت. نرم‌افزار Design Expert یک نرم‌افزار مناسب برای پیش‌بینی و بررسی انرژی‌سوزی ساختمان‌های چند طبقه است. در این پژوهش، برای بررسی انرژی‌سوزی ساختمان‌های چند طبقه، استفاده از نرم‌افزار Design Expert به منظور پیش‌بینی و بررسی این انرژی‌سوزی صورت گرفت. نرم‌افزار Design Expert یک نرم‌افزار مناسب برای پیش‌بینی و بررسی انرژی‌سوزی ساختمان‌های چند طبقه است.

دیگر اقلیم‌ها و روستا: تجربه‌های همچون، در این پژوهش، برای بررسی انرژی‌سوزی ساختمان‌های چند طبقه، استفاده از نرم‌افزار Design Expert به منظور پیش‌بینی و بررسی این انرژی‌سوزی صورت گرفت. نرم‌افزار Design Expert یک نرم‌افزار مناسب برای پیش‌بینی و بررسی انرژی‌سوزی ساختمان‌های چند طبقه است.

3. فرآیند و روش تحلیل

3.1. فرآیند تحلیل

به منظور بررسی رفتار از نظر انرژی‌سوزی ساختمان‌های چند طبقه در این پژوهش، برای بررسی انرژی‌سوزی ساختمان‌های چند طبقه، استفاده از نرم‌افزار Design Expert به منظور پیش‌بینی و بررسی این انرژی‌سوزی صورت گرفت. نرم‌افزار Design Expert یک نرم‌افزار مناسب برای پیش‌بینی و بررسی انرژی‌سوزی ساختمان‌های چند طبقه است.

3.2. روش تحلیل

به منظور بررسی رفتار از نظر انرژی‌سوزی ساختمان‌های چند طبقه در این پژوهش، برای بررسی انرژی‌سوزی ساختمان‌های چند طبقه، استفاده از نرم‌افزار Design Expert به منظور پیش‌بینی و بررسی این انرژی‌سوزی صورت گرفت. نرم‌افزار Design Expert یک نرم‌افزار مناسب برای پیش‌بینی و بررسی انرژی‌سوزی ساختمان‌های چند طبقه است.
تیمارهای بسیاری یک سری تغییرات در تغییرات و شیب خونه گذشته است. در جایگاه‌های جنوب 1/15 و 1/24 تغییرات گاهی با صورت نمی‌گردد و باید آزمایش طولی، میزان خامات، قاب‌های خامات و میزان مترولگی بسته شده است.

<table>
<thead>
<tr>
<th>جدول 1. مشخصات فیزیکی در میل</th>
</tr>
</thead>
<tbody>
<tr>
<td>عرض از آرامش طولی از فیزیکی میل (cm)</td>
</tr>
<tr>
<td>طول (cm)</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

شکل 3. تغییرهایی بر اینگاری

شکل 3. حساسیت سازه.

در جایگاه‌های جنوب 2/3 و 4/6 تغییرات گاهی با صورت می‌گردد و برای آزمایش طولی، میزان خامات، قاب‌های خامات و میزان مترولگی بسته شده است.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.

شکل 4. طولانی‌ترین طول بسیار قابل قبول در کمپین هسته‌ای می‌باشد.
جدول ۲: مشخصات ستون‌ها در سال‌های مختلف

<table>
<thead>
<tr>
<th>$h/b = 1/5$</th>
<th>$h/b = 1/3.5$</th>
<th>$h/b = 1$</th>
<th>$h/b = 1/2.5$</th>
<th>$h/b = 9/5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول عرض آرمونر (cm)</td>
</tr>
<tr>
<td>50</td>
<td>42</td>
<td>20</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>21</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

جدول ۳: تحلیل غیرخطی

درای دیپشین برای اجرای تحلیل غیرخطی از نرم‌افزارهایی مانند IRIS و نرم‌افزارهای مدرن و نورولوژی بهره‌مند می‌شود. این نرم‌افزارها قادرند یک بافت را در مدل‌های غیرخطی سازه‌ها بسازند. برای اجرای این تحلیل، نرم‌افزارهای از نظر قانونی و قوانینی در مبحثی بسیار بزرگ و زیادی است که نتایج به خوبی با نرم‌افزارهای متناسب می‌نماید.

نتایج تحلیل سازمانی

۳.۷.۱: منحنی برای بررسی و بررسی از طبقه‌بندی آخر

برای کلیه مدل‌ها، منحنی هیستوری برای بررسی از طبقه‌بندی آخر نمایش داده می‌شود. به همراه این منحنی، یک نمونه از آن در شکل ۶ نشان داده شده است.

در شکل‌های ۷ و ۸، پوشش منحنی برای بررسی و بررسی غیربازگشتی می‌باشد. در این جدول می‌تواند به شکل ۷ نشان دهد که نتایج نسبت به طول عرض به‌کارگیری یک هیستوری برگر دریافت شده است.
شکل 7. پوش منحنی برخ پایه بر حسب تغییرات بالای نسبت خاک
تربیتی خامه‌های باریک نرم

پاژی و نگر آزمون‌های طولی سرده درمان سمن‌سازی‌ها که باعث افزایش مقاومت
خش‌خانه‌های مذکور می‌شود
در شکل 6 ملاحظه می‌شود که افزایش صربس‌بندی
حقایقی بیشتری برخ و حسی است که در گله‌ی دو الی سه نژاد
در جابجایی به چشم می‌رسد در حالی که افزایش
جامعه‌ای چهار پاهی دارد. البته در غیرین
محوری و ناحیه‌های طولی افزایش صربس‌بندی موجب شده است
در شکل 7 ملاحظه می‌شود، پوش منحنی محوری با
نحوه تغییرات خامه‌های باریک نرم
در فاصله‌های مذکور می‌شود از ناحیه ای در فاصله
شده و فاصله صربس‌بندی‌ها است. البته در خصوص نسبت طول به عرض کوچک‌تر
ار از طرفین به بالینه، صربس‌بندی در گله‌ی دو نژاد
است که در این طولی به صورت است. البته در جابجایی
پس از طولی به بالینه، صربس‌بندی در گله‌ی دو
از ناحیه ای در فاصله
پوش منحنی برخ پایه بر حسب تغییرات بالای نسبت خاک
شکل 8. پوش منحنی برخ پایه بر حسب تغییرات بالای نسبت خاک
تربیتی خامه‌های باریک نرم

شکل 9. پوش منحنی برخ پایه بر حسب تغییرات بالای نسبت خاک
تربیتی خامه‌های باریک نرم

شکل 10. پوش منحنی برخ پایه بر حسب تغییرات بالای نسبت خاک
تربیتی خامه‌های باریک نرم

215
شکل 11. منحنی گاهش سختی برای نسبت‌های مختلف ضرب مخصوصی.

شکل 12. منحنی گاهش سختی برای نسبت‌های مختلف آرترومتر طولی.

شکل 9. منحنی تغییرات سختی به سختی اولیه برای مثلث با مشخصات:

\[
\frac{h}{b} = 0.75, \quad C_{EFF} = 0.88, \quad As/As_1 = 1, \quad Sp/Sp_1 = 1.5
\]

شکل 10. منحنی گاهش سختی برای نسبت‌های مختلف طول به عرض سطح.

شکل 13. منحنی گاهش سختی برای نسبت‌های مختلف طول به عرض سطح.

شکل 8. منحنی تغییرات سختی به سختی اولیه برای مثلث با مشخصات:

\[
\frac{h}{b} = 0.75, \quad C_{EFF} = 0.88, \quad As/As_1 = 1, \quad Sp/Sp_1 = 1.5
\]
جدول ۴: پایشی بحث آزمایش‌های خارجی معنی‌دار برای تحلیل آماری

<table>
<thead>
<tr>
<th>Stiff. Degra</th>
<th>پایش ۱</th>
<th>پایش ۲</th>
<th>پایش ۳</th>
<th>پایش ۴</th>
<th>پایش ۵</th>
<th>پایش ۶</th>
<th>پایش ۷</th>
<th>پایش ۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۱</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
</tr>
<tr>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۱</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
<td>۰/۶۳۲۷۶</td>
</tr>
<tr>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۲</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
</tr>
<tr>
<td>۰/۳۲۷۶۲</td>
<td>۰/۳۲۷۶۲</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
</tr>
<tr>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
</tr>
<tr>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
<td>۰/۳۲۷۰۵</td>
</tr>
<tr>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۲</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
</tr>
<tr>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۲</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
<td>۰/۳۲۷۶۷</td>
</tr>
</tbody>
</table>

انتشار عوامل از روش آماری سطح پایش استفاده و این تابع حاصل شده است.

\[D_I = \frac{d_{IA}}{d_{IA}} + \frac{\beta}{V_{E_H}} \int dE_H \]

که در آن، \(d_{IA} \) ظرفیت تعیین شکل تحت پربازیکی و \(d_{IA} \) تعیین شکل تحت پربازیکی

\[V_{E_H} \] مقادیر شناخته و \(\beta \) یک ضریب

\[E_H \] افزایش می‌شود.

۴. نتایج تحلیل آماری

مقدار شاخص خارجی و شبیه‌سازی کافی به‌نوعی نسبی محور‌برداری کلی از تابع تحلیل

\[\text{RSM} \] تعیین شده که نتایج آن در جدول ۴ سال شده است به‌صورتی است.
جدول 5. نتایج آزمون ANOVA برای شاخص خاکی در جامعه بی %

<table>
<thead>
<tr>
<th>P-value</th>
<th>Prob > F</th>
<th>F-value</th>
<th>Mean square</th>
<th>df</th>
<th>Sum of squares</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0001</td>
<td>9.478</td>
<td>1.379E-3</td>
<td>12</td>
<td>0</td>
<td>model</td>
<td></td>
</tr>
<tr>
<td>0.0198</td>
<td>3.321</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>A : h/b</td>
<td></td>
</tr>
<tr>
<td>0.3019</td>
<td>1.016</td>
<td>9.338E-4</td>
<td>1</td>
<td>8.793E-4</td>
<td>B : co</td>
<td></td>
</tr>
<tr>
<td>< 0.0001</td>
<td>12.923</td>
<td>3.091E-2</td>
<td>1</td>
<td>0</td>
<td>C : long.</td>
<td></td>
</tr>
<tr>
<td>0.0984</td>
<td>2.911</td>
<td>1.379E-2</td>
<td>1</td>
<td>4.884E-2</td>
<td>D : spec.</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.145</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>0.199</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>AC</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>CD</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>A'</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>B'</td>
<td></td>
</tr>
<tr>
<td>< 0.0001</td>
<td>3.165</td>
<td>3.091E-2</td>
<td>1</td>
<td>0</td>
<td>C'</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>D'</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>Residual</td>
<td></td>
</tr>
<tr>
<td>0.0222</td>
<td>3.165</td>
<td>3.091E-2</td>
<td>1</td>
<td>0</td>
<td>Cor Total</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6. نتایج آزمون ANOVA برای شاخص خاکی در جامعه بی %

<table>
<thead>
<tr>
<th>P-value</th>
<th>Prob > F</th>
<th>F-value</th>
<th>Mean square</th>
<th>df</th>
<th>Sum of squares</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0001</td>
<td>9.478</td>
<td>1.379E-3</td>
<td>12</td>
<td>0</td>
<td>model</td>
<td></td>
</tr>
<tr>
<td>0.0198</td>
<td>3.321</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>A : h/b</td>
<td></td>
</tr>
<tr>
<td>0.3019</td>
<td>1.016</td>
<td>9.338E-4</td>
<td>1</td>
<td>8.793E-4</td>
<td>B : co</td>
<td></td>
</tr>
<tr>
<td>< 0.0001</td>
<td>12.923</td>
<td>3.091E-2</td>
<td>1</td>
<td>0</td>
<td>C : long.</td>
<td></td>
</tr>
<tr>
<td>0.0984</td>
<td>2.911</td>
<td>1.379E-2</td>
<td>1</td>
<td>4.884E-2</td>
<td>D : spec.</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.145</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>0.199</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>AC</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>CD</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>A'</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>B'</td>
<td></td>
</tr>
<tr>
<td>< 0.0001</td>
<td>3.165</td>
<td>3.091E-2</td>
<td>1</td>
<td>0</td>
<td>C'</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>D'</td>
<td></td>
</tr>
<tr>
<td>0.2017</td>
<td>2.017</td>
<td>1.737E-4</td>
<td>1</td>
<td>1.287E-2</td>
<td>Residual</td>
<td></td>
</tr>
<tr>
<td>0.0222</td>
<td>3.165</td>
<td>3.091E-2</td>
<td>1</td>
<td>0</td>
<td>Cor Total</td>
<td></td>
</tr>
</tbody>
</table>

از جدول 5 ملاحظه می‌شود که مقادیر P برای جملات A, B, D, AB, AD, BC, ABD و B' در سطح منفی-خوانی (α < 0.05) قرار دارند. در این موارد، شاخص خاکی جامعه بی % به‌طور چشم‌گیری از نظر آماری تفاوت باعث می‌شود.

Damage Index⁴ در جدول زیر نشان داده شده است:

\[
\text{Damage Index}_{D, m} = \frac{1}{m} \sum_{i=1}^{m} \frac{h}{b} = h^t \left(1 + 1.3137 \left(\frac{A}{B} - 1\right)^2 \right)
\]

که در آن، t = 1.5

با استفاده از آزمون ANOVA برای شاخص خاکی در جامعه بی %، نتایج نشان می‌دهند که مقادیر P برای جملات A, B, D, AB, AD, BC, ABD و B' در سطح منفی-خوانی (α < 0.05) قرار دارند. در این موارد، شاخص خاکی جامعه بی % به‌طور چشم‌گیری از نظر آماری تفاوت باعث می‌شود.
جدول 7. نتایج آزمون ANOVA برای شاخص خرابی در جایه‌جایی.

<table>
<thead>
<tr>
<th>P-value Prob>F</th>
<th>F value</th>
<th>Mean square</th>
<th>df</th>
<th>Sum of squares</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0001</td>
<td>37/51</td>
<td>0.12</td>
<td>1</td>
<td>0.12</td>
<td>model</td>
</tr>
<tr>
<td>< 0.0001</td>
<td>22/51</td>
<td>0.13</td>
<td>1</td>
<td>0.13</td>
<td>C : long.</td>
</tr>
<tr>
<td>1.055E-2</td>
<td>22</td>
<td>0.20</td>
<td>2</td>
<td>0.44</td>
<td>Residual</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0.17</td>
<td>2</td>
<td>0.34</td>
<td>Cor Total</td>
</tr>
</tbody>
</table>

جدول 8. نتایج آزمون ANOVA برای شاخص خرابی در جایه‌جایی.

<table>
<thead>
<tr>
<th>P-value Prob>F</th>
<th>F value</th>
<th>Mean square</th>
<th>df</th>
<th>Sum of squares</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0001</td>
<td>15/79</td>
<td>0.92</td>
<td>3</td>
<td>0.27</td>
<td>model</td>
</tr>
<tr>
<td>0.284</td>
<td>1/84</td>
<td>0.27</td>
<td>1</td>
<td>0.27</td>
<td>A : h/b</td>
</tr>
<tr>
<td>< 0.0001</td>
<td>0.5/99</td>
<td>0.42</td>
<td>1</td>
<td>0.42</td>
<td>C : long.</td>
</tr>
<tr>
<td>0.11</td>
<td>21</td>
<td>0.11</td>
<td>2</td>
<td>0.22</td>
<td>Residual</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0.17</td>
<td>2</td>
<td>0.34</td>
<td>Cor Total</td>
</tr>
</tbody>
</table>

\[
\text{Damage Index}_{Dki}^{\text{res.}} = 0.92312 + 0.81212 \frac{h}{b}
\]

\[
\text{Adjusted } R^2 = 0.83
\]

تخمین شاخص خرابی در جایه‌جایی.

با استفاده از تابع آزمون ANOVA در جدول 7، نتایج نهایی آن در \(h/b \) با استفاده از نتایج آزمون ANOVA در جایه‌جایی، بر حسب \(h/b \) برای هر چهار عضوی به شرح زیر است:

\[
\text{Damage Index}_{Dki}^{\text{res.}} = 0.92312 + 0.81212 \frac{h}{b}
\]

\[
\text{Adjusted } R^2 = 0.83
\]

شکل 14. تخمین اثرات تبیین نبی خرابی طولی و ضربه محصول‌گذار.

شاخچ خرابی با جایه‌جایی 15/5 با فرمول ارتقاء قابل پیروی است. ترکیب به 1 و دو عدد مکانیکی و درجه‌بندی عمومی تثبیت‌گر با تثبیت‌گر کم این پایان‌یافته است. سایر عامل‌ها باید به عنوان یک شبیه‌سازی از راه‌حل‌ها است. با استفاده از تابع آزمون ANOVA در جایه‌جایی، شکل 14 در نمودار شده است.

\[
\text{Stiffness Degradation} = 0.2521 - 0.1245 \frac{h}{b}
\]

\[
\text{Adjusted } R^2 = 0.71
\]

تخمین شاخص خرابی در جایه‌جایی.

با استفاده از تابع آزمون ANOVA در جدول 8، نتایج نهایی آن در جدول 8 با استفاده از نتایج آزمون ANOVA در جایه‌جایی.

\[
\text{Damage Index}_{Dki}^{\text{res.}} = 0.92312 + 0.81212 \frac{h}{b}
\]

\[
\text{Adjusted } R^2 = 0.83
\]
جدول ۹. نتیجه آزمون ANOVA برای شیب کاهش سختی سازه

<table>
<thead>
<tr>
<th>P-value Prob>F</th>
<th>F value</th>
<th>Mean square</th>
<th>df</th>
<th>Sum of squares</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0001</td>
<td>10.16</td>
<td>7.059E - 3</td>
<td>6</td>
<td>7.059E - 2</td>
<td>model</td>
</tr>
<tr>
<td>0.0378</td>
<td>1.10</td>
<td>4.713E - 2</td>
<td>1</td>
<td>4.713E - 1</td>
<td>A : h/b</td>
</tr>
<tr>
<td>0.1124</td>
<td>0.79</td>
<td>1.955E - 2</td>
<td>1</td>
<td>1.955E - 1</td>
<td>B : co</td>
</tr>
<tr>
<td>< 0.0001</td>
<td>28.99</td>
<td>2.733E - 2</td>
<td>1</td>
<td>2.733E - 1</td>
<td>C : long.</td>
</tr>
<tr>
<td>0.0045</td>
<td>19.77</td>
<td>4.210E - 2</td>
<td>1</td>
<td>4.210E - 1</td>
<td>B'</td>
</tr>
<tr>
<td>0.0006</td>
<td>19.12</td>
<td>1.932E - 2</td>
<td>1</td>
<td>1.932E - 1</td>
<td>C'</td>
</tr>
</tbody>
</table>

e: تعداد هر دسته

5. مقایسه نتایج و تفسیر

این دو ترکیب به ارزش قابل توجهی نسبت طول به عرض و ضریب محورشدن یک در گام‌هایی درسازه (ابتدایی ۳) که شانه‌هایی رافشته داره‌است و در قسمت انتهایی نسبت طول به عرض س تن در ضریب محورشدنی و میان آزمایشگاه‌هایی برای این دسته، ما حاصلیم داشته‌ایم که افزایش ضریب محورشدنی باعث افزایش شیب کاهش خلیفی می‌شود. در پژوهشی در سال ۲۰۰۴، نتایج محاسبه شده نشانه‌های کیفیت‌دهنده طولی و ضریب محورشدنی در سازه‌های خلیفی با همین دلیل است. این مدل‌های با نسبت طول به عرض کرکدر از ۱ ساخته شدند بهتر است که راه حل‌هایی از خود تشکیل می‌دهند. مدل‌های طولی که پیامدهای شده است، این علل به دقت افزایش داشته‌اند تا افزایش بار ویژه آزمایش‌های آزمایشگاهی.

اما در جایگاه‌های جنوبی ۳/۲ و ۳/۴ افزایش شیب خلیفی فقط نتیجه پیوسته میان آزمایش‌های طولی و نسبت این دسته استرس، ایجاد خاموشی و ضریب محورشدنی در شاخه خلیفی نیز تیزتر دارند. همانطور که پیامدهای شده، ساخته‌گذار و رابط مشخص می‌کند که این افزایش میان آزمایش‌های طولی، شاخه خلیفی کاهش می‌یابد.

از سوی دیگر، این پدیده به شیب‌سازه و افزایش کاهش سختی نشان می‌دهد که

به عوامل یک تاخن نسبت طول به عرض و ضریب محورشدنی یک در گام‌هایی درسازه که انحراف‌های گرمایی نسبت طول به عرض ستون و ضریب محورشدنی یک در محو قابل شیب منحنی تغییرات سختی است.

شکل 15. اثر نسبت طول به عرض و ضریب محورشدنی در تغییرات منحنی نسبت طول به عرض.

شکل 16. تغییرات شیب خلیفی در جایگاهی ۵/۱۵ در اثر تغییرات نسبت طول به عرض.
1. response surface method (RSM)

(References)

21. Design of Concrete Structures (CSA A23.3-04), Canadian Standards Association (2004).

