TY - JOUR
ID - 23154
TI - Laboratory investigation of mechanical characteristics of powder mortar containing polymer resin
JO - Sharif Journal of Civil Engineering
JA - J30
LA - en
SN - 2676-4768
AU - Heidari, A.
AU - Ghorbani Samani, E.
AD - Dept of Civil Engineering Faculty of Technical and Engineering Shahrekord University
Y1 - 2023
PY - 2023
VL - 39
IS - 3
SP - 3
EP - 11
KW - Mortar
KW - Mechanical behavior
KW - Polymer resin
KW - Sand to cement ratio
DO - 10.24200/j30.2023.60959.3132
N2 - Mortars are heterogeneous construction materials whose raw materials, manufacturing processes and application conditions have continuously evolved throughout time . Mortars are artificial construction materials that consist of; one or more mineral adhesives whose main function is to connect loose grains using different chemical changes in their mass, aggregates that are used to create volume stability on the mortar mass and water that is used to mix the mortar components into a sticky dough. Materials must be carefully measured and mixed to give the desired balance to bring out its essential properties. Therefore, in this research, 11 mixing plans for mortar, which is a kind of reactive powder concrete, with sand to cement ratios of 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6, 25 6.5, 6.5, 6.75, and 7 were made and the effect of increasing the ratio of sand to cement was evaluated, and by analyzing the results of compressive strength, it was observed that the highest compressive strength was at the age of 1, 7, 14, and 28 days of the sample with a sand-cement ratio of 4.75 and at the ages of 42, 56 and 90 days, it corresponds to the sample with a sand-to-cement ratio of 4.5 and by analyzing the flexural strength results, it was also observed that the highest flexural strength is related to the sample with a sand-to-cement ratio of 4.5. Then the effect of adding 1% of polymer resin to 11 sand-cement ratio was investigated. From the analysis of the results, it was found that adding 1% of polymer resin at the age of 1 day causes a decrease in compressive strength compared to samples without polymer resin. But with increasing age of samples in high sand-cement ratios, an increase in compressive strength is observed. The highest compressive strength at ages 7, 14, 28, 42, 56 and 90 is for the sand-cement ratio of 4.75 and the highest flexural strength was observed at the sand-cement ratio of 4.5.
UR - https://sjce.journals.sharif.edu/article_23154.html
L1 - https://sjce.journals.sharif.edu/article_23154_e629c4cc34c365a24272b2e7f3aa4a58.pdf
ER -