1. Asadi, R. and Ataie-Ashtiani, B., 2015. A comparison of finite volume formulations and coupling strategies for two-phase flow in deforming porous media. Computers and Geotechnics, 67, pp.17-32. https://doi.org/10.1016/j.compgeo.2015.02.004
2. Donoso, M., Di Baldassarre, G., Boegh, E., Browning, A., Oki, T., Tindimugaya, C., Vairavamoorthy, K., Vrba, J., Zalewski, M. and Zubari, W. K., 2012.
International hydrological programme (ihp) eighth phase: water security: Responses to local, regional and global challenges. Strategic Plan, Ihp-Viii (2014-2021). Catalog number p.218061, UNESCO. https://unesdoc.unesco.org/images/0021/002180/218061e.pdf
3. Fulton, A., 2006. Land subsidence: What is it and why is it an important aspects of groundwater management.
Sacramento: California Department of Water Resources. Available: https://shorturl.at/euGY7
4. Motagh, M., Djamour, Y., Walter, T.R., Wetzel, H.U., Zschau, J. and Arabi, S., 2007. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophysical Journal International, 168(2), pp.518–526. https://doi.org/10.1111/j.1365-246X.2006.03246.x
5. Mousavi, M., 1998. Analysis of mutual effects of hydraulic parameters and ground subsidence due to groundwater extraction. Sharif University of Technology. Available: https://shorturl.at/oLMP8. [In Persian].
6. Tey, W. Y., Asako, Y., Ng, K. C. and Lam, W. H., 2020. A review on development and applications of element-free galerkin methods in computational fluid dynamics.https://doi.org/10.1080/15502287.2020.1821126.
7. Iranmanesh, M. A. and Pak, A., 2023. Three-dimensional numerical simulation of hydraulically driven cohesive fracture propagation in deformable reservoir rock using enriched EFG method. Computational Geosciences, 27(2), pp.317–335. https://doi.org/10.1007/S10596-023-10198-2/METRICS.
8. Dinesh, P., Ranjith, P. G., Behera, M. R. and Muthu, N., 2021. Experimental and numerical (EFG method) studies on sedimentary rock under varied salinity conditions. International Journal of Rock Mechanics and Mining Sciences, 148, p.104909. https://doi.org/10.1016/J.IJRMMS.2021.104909.
9. Khoshghalb, A. and Khalili, N., 2010. A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media. Computers and Geotechnics, 37(6), pp.789–795. https://doi.org/10.1016/j.compgeo.2010.06.005.
10. Biot, M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), pp.155–164. https://doi.org/10.1063/1.1712886.
11. Nazari, A. and Haji Hosseini Mesgar, A., 2017. Prediction of subsidence caused by exploitation of underground water resources using mathematical modeling (case study: Aliabad Plain). The 16th Iranian Hydraulic Conference, Mohaghegh Ardabili University, 1, pp.1–8 [In Persian].
12. Rajabi, A. M., 2018. A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran. Natural Hazards, 93(2), pp.1085–1103. https://doi.org/10.1007/s11069-018-3448-z.
13. Pathania, T., Eldho, T. I. and Bottacin-Busolin, A., 2020. Coupled simulation of groundwater flow and multispecies reactive transport in an unconfined aquifer using the element-free Galerkin method. Engineering Analysis with Boundary Elements, 121, pp.31–49. https://doi.org/10.1016/j.enganabound.2020.08.019.
14. Pathania, T. and Rastogi, A. K., 2017. Groundwater flow simulation in confined aquifer by meshless element free galerkin method. European Water, 57(2000), pp.505–512. https://doi.org/0.1016/j.enganabound.2020.08.019.
15. Nayroles, B., Touzot, G. and Villon, P., 1992. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10(5). https://doi.org/10.1007/BF00364252
16. Belytschko, T., Lu, Y. Y. and Gu, L., 1994. Element‐free galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), pp.229–256. https://doi.org/10.1002/nme.1620370205.
17. Liu, G. R., 2002. Mesh free methods: Moving beyond the finite element method. In Mesh Free Methods: Moving beyond the Finite Element Method. https://doi.org/10.1299/jsmecmd.2003.16.937.
18. Samimi, S. and Pak, A., 2014. A novel three-dimensional element free Galerkin (EFG) code for simulating two-phase fluid flow in porous materials. Engineering Analysis with Boundary Elements, 39(1). https://doi.org/10.1016/j.enganabound.2013.10.011.
19. Samimi, S. and Pak, A., 2016. A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media. Meccanica, 51. https://doi.org/10.1007/s11012-015-0231-z.
20. Iranmanesh, M. A., Pak, A. and Samimi, S., 2018. Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model. Computers and Geotechnics, 99, pp.93–103. https://doi.org/10.1016/j.compgeo.2018.02.024
21. van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), pp.892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
22. Huyakorn, P.S., Thomas, B.M. and Thompson, B.M., 1984. Techniques for making finite elements competitve in modeling flow in variably saturated porous media. Water Resources Research, 20(8), pp.1099-1115. https://doi.org/10.1029/WR020i008p01099
23. Brooks, R. and Corey, A., 1964. Hydraulic properties of porous media. Hydrology Papers, Colorado State University, 3(March), 37 pp. [Online]. Available: http://www.citeulike.org/group/1336/article/711012
24. Rahman, N. A. and Lewis, R. W., 1999. Finite element modelling of multiphase immiscible flow in deforming porous media for subsurface systems. Computers and Geotechnics, 24(1), pp.41–63. https://doi.org/10.1016/S0266-352X(98)00029-9
25. Khoei, A.R. and Mohammadnejad, T., 2011. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Computers and Geotechnics, 38(2), pp.142–166.
https://doi.org/10.1016/j.compgeo.2010.10.010
26. Tourei, A., 2021. Numerical modelling of land subsidence induced by groundwater extraction in aquifers, considering the unsaturated effects and using the element-free Galerkin method. Sharif University of Technology. Available: https://shorturl.at/blqvQ. [In Persian].
27. Kim, J. M., 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research, 41(1), pp.1–16. https://doi.org/10.1029/2003WR002941.