مدلسازی عددی فرونشست زمین ناشی از استخراج آب های زیرزمینی با لحاظ کردن اثرات غیر اشباع و به روش بدون المان گالرکین (EFG)

نوع مقاله : پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی شریف

2 دانشکده ی مهندسی عمران - دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در پژوهش حاضر، به کمک یک مدل عددی کاملاً همبسته‌ی هیدرومکانیکال، پدیده‌ی فرونشست ناشی از استخراج آب‌های زیرزمینی از آبخوان‌ها با درنظرگرفتن آثار غیراشباع به روش بدون‌المان‌گالرکین (EFG) شبیه‌سازی شده است. به کمک مدل اخیر می‌توان یک پیش‌بینی مناسب برای تغییرات هد هیدرولیکی و میزان فرونشست زمین ارائه کرد. پس از حل مسائل محک، مدل نهائی برای حل مسئله‌ی‌ فرونشست استفاده شد. نتایج پژوهش حاضر با نتایج روش المان‌محدود (FEM) برای یک آبخوان همسان و با درنظرگرفتن شرایط غیراشباع مقایسه و خطای فرونشست زمین 51/5٪ و خطای افت هدهیدرولیکی 35/13٪ محاسبه شد، که نشان از تطابق مناسب بین نتایج دو روش اخیر است. نتایج نشان می‌دهند که روش EFG قابلیت مدل‌سازی پدیده‌ی فرونشست را دارد. همچنین آثار غیرخطی استخراج آب‌های زیرزمینی در کاهش هد هیدرولیکی و افزایش فرونشست قابل تعیین است. درنهایت، یک مطالعه‌ی پارامتری به‌منظور بررسی میزان تأثیر ویژگی‌های ژئوتکنیکی آبخوان در میزان فرونشست انجام شد. پارامترهای مدول کشسان و ضریب پواسون بیشترین تأثیر را در میزان فرونشست زمین دارند و لازم است پیش از اجرای پروژه‌های برداشت آب‌های زیرزمینی، پارامترهای مذکور با دقت قابل قبول درنظر گرفته ‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical modeling of land subsidence induced by groundwater extraction considering unsaturated effects and using element-free Galerkin (EFG) method

نویسندگان [English]

  • A. Tourei 1
  • A. Pak 1
  • M. A. Iranmanesh 2
1 Civil Engineering Department, Sharif University of Technology, Tehran, Iran
2 Civil Engineering Department, Khajeh Nasir Toosi University of Technology, Tehran, Iran
چکیده [English]

This study aims to provide a coupled flow-deformation model for simulating land subsidence associated with groundwater extraction in aquifers. For this simulation, we have adopted the element-free Galerkin (EFG) method and considered the unsaturated effects in the aquifers based on the aquifer's hydrologic and geotechnical characteristics. This model gives us a better understanding of the aquifer's hydrogeological characteristics, enabling us to forecast changes in the hydraulic head and land subsidence. To ensure the credibility of our model and to verify the code, we modeled unsaturated hydromechanical benchmark problems. Then, using the EFG method as a numerical tool, we modeled an isotropic aquifer to investigate the effects of groundwater pumping on land subsidence and hydraulic changes in the aquifer. To ascertain the reliability of the modeling, we compared the results obtained from the EFG method with those from the Finite Element Method (FEM). The comparative analysis of EFG and FEM models demonstrates discrepancies of 5.51% in land subsidence and 13.35% in hydraulic head reduction, which are satisfying. The land subsidence and hydraulic head profiles demonstrate that the EFG method is capable of land subsidence simulation caused by water pumping. Furthermore, our findings highlight the nonlinear correlation between groundwater extraction and the subsequent decrease in hydraulic head and land subsidence augmentation. Finally, we conducted a parametric study to better understand the effect of various characteristics of aquifers and observe the effect of the aquifer's parameters, such as hydraulic conductivity, elastic modulus, and Poisson's ratio. We investigated the effect of each parameter on land subsidence increase and hydraulic head decline. The results show that elastic modulus and Poisson's ratio have the most significant effect on land subsidence. Although hydraulic conductivity controls the hydraulic decrement and land subsidence increase time, it slightly affects the ultimate hydraulic head and land subsidence at the steady-state stage. These results highlight the importance of in-situ measurement of elastic modulus and Poisson's ratio paraeters with acceptable accuracy for groundwater extraction projects, as these parameters play a significant role in the feasibility studies.

کلیدواژه‌ها [English]

  • Land subsidence
  • Groundwater extraction
  • Numerical modeling
  • Coupled hydromechanical analysis
  • Element-free Galerkin (EFG)
  • Unsaturated effects
1. Asadi, R. and Ataie-Ashtiani, B., 2015. A comparison of finite volume formulations and coupling strategies for two-phase flow in deforming porous media. Computers and Geotechnics, 67, pp.17-32. https://doi.org/10.1016/j.compgeo.2015.02.004 2. Donoso, M., Di Baldassarre, G., Boegh, E., Browning, A., Oki, T., Tindimugaya, C., Vairavamoorthy, K., Vrba, J., Zalewski, M. and Zubari, W. K., 2012. International hydrological programme (ihp) eighth phase: water security: Responses to local, regional and global challenges. Strategic Plan, Ihp-Viii (2014-2021). Catalog number p.218061, UNESCO. https://unesdoc.unesco.org/images/0021/002180/218061e.pdf 3. Fulton, A., 2006. Land subsidence: What is it and why is it an important aspects of groundwater management. Sacramento: California Department of Water Resources. Available: https://shorturl.at/euGY7 4. Motagh, M., Djamour, Y., Walter, T.R., Wetzel, H.U., Zschau, J. and Arabi, S., 2007. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophysical Journal International, 168(2), pp.518–526. https://doi.org/10.1111/j.1365-246X.2006.03246.x 5. Mousavi, M., 1998. Analysis of mutual effects of hydraulic parameters and ground subsidence due to groundwater extraction. Sharif University of Technology. Available: https://shorturl.at/oLMP8. [In Persian]. 6. Tey, W. Y., Asako, Y., Ng, K. C. and Lam, W. H., 2020. A review on development and applications of element-free galerkin methods in computational fluid dynamics.https://doi.org/10.1080/15502287.2020.1821126. 7. Iranmanesh, M. A. and Pak, A., 2023. Three-dimensional numerical simulation of hydraulically driven cohesive fracture propagation in deformable reservoir rock using enriched EFG method. Computational Geosciences, 27(2), pp.317–335. https://doi.org/10.1007/S10596-023-10198-2/METRICS. 8. Dinesh, P., Ranjith, P. G., Behera, M. R. and Muthu, N., 2021. Experimental and numerical (EFG method) studies on sedimentary rock under varied salinity conditions. International Journal of Rock Mechanics and Mining Sciences, 148, p.104909. https://doi.org/10.1016/J.IJRMMS.2021.104909. 9. Khoshghalb, A. and Khalili, N., 2010. A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media. Computers and Geotechnics, 37(6), pp.789–795. https://doi.org/10.1016/j.compgeo.2010.06.005. 10. Biot, M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), pp.155–164. https://doi.org/10.1063/1.1712886. 11. Nazari, A. and Haji Hosseini Mesgar, A., 2017. Prediction of subsidence caused by exploitation of underground water resources using mathematical modeling (case study: Aliabad Plain). The 16th Iranian Hydraulic Conference, Mohaghegh Ardabili University, 1, pp.1–8 [In Persian]. 12. Rajabi, A. M., 2018. A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran. Natural Hazards, 93(2), pp.1085–1103. https://doi.org/10.1007/s11069-018-3448-z. 13. Pathania, T., Eldho, T. I. and Bottacin-Busolin, A., 2020. Coupled simulation of groundwater flow and multispecies reactive transport in an unconfined aquifer using the element-free Galerkin method. Engineering Analysis with Boundary Elements, 121, pp.31–49. https://doi.org/10.1016/j.enganabound.2020.08.019. 14. Pathania, T. and Rastogi, A. K., 2017. Groundwater flow simulation in confined aquifer by meshless element free galerkin method. European Water, 57(2000), pp.505–512. https://doi.org/0.1016/j.enganabound.2020.08.019. 15. Nayroles, B., Touzot, G. and Villon, P., 1992. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10(5). https://doi.org/10.1007/BF00364252 16. Belytschko, T., Lu, Y. Y. and Gu, L., 1994. Element‐free galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), pp.229–256. https://doi.org/10.1002/nme.1620370205. 17. Liu, G. R., 2002. Mesh free methods: Moving beyond the finite element method. In Mesh Free Methods: Moving beyond the Finite Element Method. https://doi.org/10.1299/jsmecmd.2003.16.937. 18. Samimi, S. and Pak, A., 2014. A novel three-dimensional element free Galerkin (EFG) code for simulating two-phase fluid flow in porous materials. Engineering Analysis with Boundary Elements, 39(1). https://doi.org/10.1016/j.enganabound.2013.10.011. 19. Samimi, S. and Pak, A., 2016. A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media. Meccanica, 51. https://doi.org/10.1007/s11012-015-0231-z. 20. Iranmanesh, M. A., Pak, A. and Samimi, S., 2018. Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model. Computers and Geotechnics, 99, pp.93–103. https://doi.org/10.1016/j.compgeo.2018.02.024 21. van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), pp.892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x 22. Huyakorn, P.S., Thomas, B.M. and Thompson, B.M., 1984. Techniques for making finite elements competitve in modeling flow in variably saturated porous media. Water Resources Research, 20(8), pp.1099-1115. https://doi.org/10.1029/WR020i008p01099 23. Brooks, R. and Corey, A., 1964. Hydraulic properties of porous media. Hydrology Papers, Colorado State University, 3(March), 37 pp. [Online]. Available: http://www.citeulike.org/group/1336/article/711012 24. Rahman, N. A. and Lewis, R. W., 1999. Finite element modelling of multiphase immiscible flow in deforming porous media for subsurface systems. Computers and Geotechnics, 24(1), pp.41–63. https://doi.org/10.1016/S0266-352X(98)00029-9 25. Khoei, A.R. and Mohammadnejad, T., 2011. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Computers and Geotechnics, 38(2), pp.142–166. https://doi.org/10.1016/j.compgeo.2010.10.010 26. Tourei, A., 2021. Numerical modelling of land subsidence induced by groundwater extraction in aquifers, considering the unsaturated effects and using the element-free Galerkin method. Sharif University of Technology. Available: https://shorturl.at/blqvQ. [In Persian]. 27. Kim, J. M., 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research, 41(1), pp.1–16. https://doi.org/10.1029/2003WR002941.