\شماره٪٪۱
Farrar, C.R., Doebling, S.W. and Nix, D.A., 2001. Vibration-based
structural damage identification. {\it Philosophical Transactions
of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences}, {\it 359}(1778), pp.131-149.
https://doi.org/10.1098/rsta.2000.0717.
\شماره٪٪۲
Ghannadi, P., Kourehli, S.S. and Mirjalili, S., 2022. The
application of PSO in structural damage detection: An analysis
of the previously released publications (2005-2020). {\it Frattura
ed Integrit\`{a} Strutturale}, {\it 16}(62), pp.460-489.
https://doi.org/10.3221/IGF-ESIS.62.32.
\شماره٪٪۳
Ghannadi, P., Kourehli, S.S. and Mirjalili, S., 2023. A review
of the application of the simulated annealing algorithm in structural
health monitoring (1995-2021). {\it Frattura e Integrita Strutturale},
{\it 64}. https://doi.org/10.3221/IGF-ESIS.64.04.
\شماره٪٪۴
Farrar, C.R. and Worden, K., 2007. An introduction to structural
health monitoring. {\it Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences}, {\it 365}(1851),
pp.303-315. https://doi.org/10.1098/rsta.2006.1928.
\شماره٪٪۵
Gul, M. and Catbas, F.N., 2008. Ambient vibration data analysis
for structural identification and global condition assessment.
{\it Journal of Engineering Mechanics}, {\it 134}(8), pp.650-662.
https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(650).
\شماره٪٪۶
Tseng, K.K. and Naidu, A.S., 2002. Non-parametric damage
detection and characterization using smart piezoceramic material.
{\it Smart Materials and Structures}, {\it 11}(3), p.317.
https://doi.org/10.1088/0964-1726/11/3/301.
\شماره٪٪۷
Wu, R.T. and Jahanshahi, M.R., 2020. Data fusion approaches
for structural health monitoring and system identification: Past,
present, and future. {\it Structural Health Monitoring},
{\it 19}(2), pp.552-586.
https://doi.org/10.1177/1475921718798769.
\شماره٪٪۸
Dietterich, T.G., 2000, June. Ensemble methods in machine
learning. In International Workshop on Multiple Classifier Systems
pp.1-15. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-45014-9\_1.
\شماره٪٪۹
Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S. and
Costa, J.C.W.A., 2016. Machine learning algorithms for damage
detection: Kernel-based approaches. {\it Journal of Sound and Vibration},
{\it 363}, pp.584-599. https://doi.org/10.1016/j.jsv.2015.11.008.
\شماره٪٪۱۰
Bengio, Y., 2013. July. Deep learning of representations:
Looking forward. {\it In International Conference on Statistical Language
and Speech Processing}, pp.1-37. Berlin, Heidelberg: Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39593-2\_1.
\شماره٪٪۱۱
Hastie, T., Tibshirani, R., Friedman, J.H. and Friedman,
J.H., 2009. {\it The Elements of Statistical Learning: Data Mining,
Inference, and Prediction}, {\it 2}, pp.1-758. New York: springer.
https://doi.org/10.1007/978-0-387-21606-5.
\شماره٪٪۱۲
Hakim, S.J.S., Razak, H.A. and Ravanfar, S.A., 2015. Fault
diagnosis on beam-like structures from modal parameters using
artificial neural networks. {\it Measurement}, {\it 76}, pp.45-61.
https://doi.org/10.1016/j.measurement.2015.08.021.
\شماره٪٪۱۳
Chun, P.J., Yamashita, H. and Furukawa, S., 2015. Bridge
damage severity quantification using multipoint acceleration
measurement and artificial neural networks. {\it Shock and Vibration},
{\it 2015}, pp.1-11. https://doi.org/10.1155/2015/789384.
\شماره٪٪۱۴
Ghannadi, P. and Kourehli, S.S., 2019. Data-driven method
of damage detection using sparse sensors installation by SEREPa.
{\it Journal of Civil Structural Health Monitoring}, {\it 9}, pp.459-475.
https://doi.org/10.1007/s13349-019-00345-8.
\شماره٪٪۱۵
Ghannadi, P. and Kourehli, S.S., 2021. An effective method
for damage assessment based on limited measured locations in
skeletal structures. {\it Advances in Structural Engineering}, {\it 24}(1),
pp.183-195. https://doi.org/10.1177/1369433220947193.
\شماره٪٪۱۶
Jayasundara, N., Thambiratnam, D.P., Chan, T.H.T. and Nguyen,
A., 2020. Damage detection and quantification in deck type arch
bridges using vibration based methods and artificial neural networks.
{\it Engineering Failure Analysis}, {\it 109}, p.104265.
https://doi.org/10.1016/j.engfailanal.2019.104265.
\شماره٪٪۱۷
Sarmadi, H., Entezami, A., Salar, M. and De Michele, C.,
2021. Bridge health monitoring in environmental variability by
new clustering and threshold estimation methods. {\it Journal of Civil
Structural Health Monitoring}, {\it 11}, pp.629-644.
https://doi.org/10.1007/s13349-021-00472-1.
\شماره٪٪۱۸
Nick, H., Aziminejad, A., Hosseini, M.H. and Laknejadi, K.,
2021. Damage identification in steel girder bridges using modal
strain energy-based damage index method and artificial neural
network. {\it Engineering Failure Analysis}, {\it 119}, p.105010.
https://doi.org/10.1016/j.engfailanal.2020.105010.
\شماره٪٪۱۹
Mousavi, A.A., Zhang, C., Masri, S.F. and Gholipour, G.,
2021. Damage detection and localization of a steel truss bridge
model subjected to impact and white noise excitations using empirical
wavelet transform neural network approach. {\it Measurement}, {\it 185},
p.110060. https://doi.org/10.1016/j.measurement.2021.110060.
\شماره٪٪۲۰
Corbally, R. and Malekjafarian, A., 2022. A data-driven
approach for drive-by damage detection in bridges considering
the influence of temperature change. {\it Engineering Structures},
{\it 253}, p.113783. https://doi.org/10.1016/j.engstruct.2021.113783.
\شماره٪٪۲۱
Yang, Y.B. and He, Y., 2022. Damage detection of plate-type
bridges using uniform translational response generated by single-axle
moving vehicle. {\it Engineering Structures}, {\it 266}, p.114530.
https://doi.org/10.1016/j.engstruct.2022.114530.
\شماره٪٪۲۲
Khanahmadi, M., Gholhaki, M., Rezaifar, O. and Dejkam, B.,
2023. Damage identification in steel beam structures based on
the comparison of analytical results of wavelet analysis. {\it Civil
Infrastructure Researches}, {\it 8}(2), pp.173-183. [In Persian].
https://doi.org/10.22091/cer.2022.8340.1407.
\شماره٪٪۲۳
Fallah, N., Hoseini Vaez, S.R. and Esfandiari, A., 2023.
Damage detection of steel structures by FEM updating based on
strain data. {\it Sharif Journal of Civil Engineering}. {\it Sharif Journal
of Civil Engineering}, {\it 39.2}(2), pp.39-49. [In Persian].
https://doi.org/10.24200/j30.2023.61055.3144.
\شماره٪٪۲۴
Maszczyk, T. and Duch, W., 2008. Comparison of shannon, renyi
and tsallis entropy used in decision trees. {\it In Artificial Intelligence
and Soft Computing-ICAISC 2008: 9th International Conference
Zakopane}, Poland, June 22-26, 2008 Proceedings 9 (pp. 643-651).
Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-69731-2\_62.\\\relax
\شماره٪٪۲۵
Xu, Y. and Zhang, H., 2009. Recent mathematical developments
on empirical mode decomposition. {\it Advances in Adaptive Data Analysis},
{\it 1}(04), pp.681-702. https://doi.org/10.1142/S1793536909000242.
\شماره٪٪۲۶
Tsallis, C., Mendes, R. and Plastino, A.R., 1998. The role
of constraints within generalized nonextensive statistics. {\it Physica
A: Statistical Mechanics and its Applications}, {\it 261}(3-4), pp.534-554.
https://doi.org/10.1016/S0378-4371(98)00437-3.
\شماره٪٪۲۷
Gilles, J., 2013. Empirical wavelet transform. {\it IEEE Transactions
on Signal Processing}, {\it 61}(16), pp.3999-4010.
https://doi.org/10.1109/TSP.2013.2265222.