\شماره٪٪۱
Li, Q., Yin, Y., Kong, L. and et al., 2021. Enhancing heat transfer
in the heat exchange medium of energy piles. {\it J. Build. Engineering},
{\it 40}, p.102375.
https://doi.org/10.1016/j.jobe.2021.102375.
\شماره٪٪۲
Brandl, H., 2006.
Energy foundations and other thermo-active ground structures.
{\it G\'{e}otechnique},
{\it 56}(2), pp.81-122.
https://doi.org/10.1680/geot.2006.56.2.81.
\شماره٪٪۳
Yasukawa, K., Uchida, Y., Tenma, N. and et al., 2009.
Groundwater
temperature survey for geothermal heat pump application in tropical
Asia. {\it Bulletin of the Geological Survey of Japan}, {\it 60}(9.10),
pp.459-467.
https://doi.org/10.9795/BULLGSJ.60.459.
\شماره٪٪۴
Brandl,
H., 2006. Ground source energy wells for heating and cooling of buildings.
{\it ACTA Geotech Slov}, {\it 1}, pp.5-27.
\شماره٪٪۵
Rotta Loria, A.F. and Laloui,
L., 2017. Thermally induced group effects among energy
piles.
{\it G\'{e}otechnique}, {\it 67}(5), pp.374-393.
https://doi.org/10.1680/jgeot.16.P.039.
\شماره٪٪۶
Koohi-Fayegh, S. and Rosen, M.A., 2014. An analytical approach to
evaluating the effect of thermal interaction of geothermal heat
exchangers on ground heat pump efficiency. {\it Energy Convers. Manage},
{\it 78}, pp.184-192.
https://doi.org/10.1016/j.enconman.2013.09.064.
\شماره٪٪۷
Tiwari, A.K., Kumar, A. and Basu, P., 2021. The influence of thermal
interaction on energy harvesting efficiency of geothermal piles
in a group. {\it Applied Thermal Engineering}, {\it 200}, p.117673.
https://doi.org/10.1016/j.applthermaleng.2021.117673.
\شماره٪٪۸
You, S., Cheng, X., Guo, H. and et al., 2014. In-situ experimental
study of heat exchange capacity of CFG pile geothermal exchangers.
{\it Energy Build}, {\it 79}, pp.23-31.
https://doi.org/10.1016/j.enbuild.2014.04.021.
\شماره٪٪۹
Abdelaziz, S.L., 2016. A sustainable perspective for the long-term behavior
of energy pile groups. {\it In Geo-Chicago}, {\it
2016}, pp.104-113.
https://doi.org/10.1061/9780784480137.011.
\شماره٪٪۱۰
Xu, B.o., Zhang, H. and Chen, Z., 2020. Study on heat transfer performance
of geothermal pile foundation heat exchanger with 3-U pipe configuration.
{\it Int. J. Heat Mass Transf}, {\it 147}, p.119020.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119020.
\شماره٪٪۱۱
Gultekin, A., Aydin, M. and Sisman, A., 2016. Thermal performance
analysis of multiple borehole heat exchangers. {\it Energy Convers.
Manage}, {\it 122}, pp.544-551.
http://dx.doi.org/10.1016/j.enconman.2016.05.086.
\شماره٪٪۱۲
Koohi-Fayegh, S. and Rosen, M.A., 2012. Examination of thermal interaction
of multiple vertical ground heat exchangers. {\it Appl. Energy},
{\it 97}, pp.962-969.
https://doi.org/10.1016/j.apenergy.2012.02.018.
\شماره٪٪۱۳
Man, Y., Yang, H., Diao, N. and et al., 2010. A new model
and analytical solutions for borehole and pile ground heat exchangers.
{\it Int. J. Heat Mass Transf}, {\it 53}(13.14), pp.2593-2601.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.001.
\شماره٪٪۱۴
Zhang, W., Yang, H., Lu, L. and et al., 2013. The analysis on solid
cylindrical heat source model of foundation pile ground heat
exchangers with groundwater flow. {\it Energy},
{\bf 55}, pp.417-425.
https://doi.org/10.1016/j.energy.2013.03.092.
\شماره٪٪۱۵
Cecinato, F. and Loveridge, F.A., 2015. Influences on the thermal
efficiency of energy piles. {\it Energy}, {\it 82}, pp.1021-1033.
https://doi.org/10.1016/j.energy.2015.02.001.
\شماره٪٪۱۶
Ghasemi-Fare, O. and Basu, P., 2016. Predictive assessment of heat
exchange performance of geothermal piles. {\it Renew. Energy}, {\it 86},
pp.1178-1196.
https://doi.org/10.1016/j.renene.2015.08.078.
\شماره٪٪۱۷
Xu, B.O., Zhang, H. and Chen, Z., 2020. Study on heat transfer performance
of geothermal pile foundation heat exchanger with 3-U pipe configuration.
{\it Int. J. Heat Mass Transf}, {\it 147}, p. 119020.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119020.
\شماره٪٪۱۸
Sailer, E., Taborda, D.M.G. and Zdravkovi'c, L., 2018. A new approach
to estimating temperature fields around a group of vertical ground
heat exchangers in two dimensional analyses. {\it Renew. Energy}, {\it 118},
pp.579-590.
https://doi.org/10.1016/j.renene.2017.11.035.
\شماره٪٪۱۹
You, T., Li, X., Cao, S. and et al., 2018. Soil thermal imbalance
of ground source heat pump systems with spiral-coil energy pile
groups under seepage conditions and various influential factors. {\it Energy
Convers. Manage}, {\it 178}, pp.123-136.
https://doi.org/10.1016/j.enconman.2018.10.027.
\شماره٪٪۲۰
VDI 4640-Blatt 1., 2010. Thermal use of the underground, fundamentals,
approvals, environmental aspects.
https://www.vdi.de/en/home/vdi-standards/details/vdi-4640-blatt-1-thermal-use-of
-the-underground-fundamentals-approvals-environmental-aspects.
\شماره٪٪۲۱
VDI 4640-Blatt 2., 2001. Thermal use of the underground, ground source
heat pump systems.
https://www.vdi.de/richtlinien/details/vdi-4640-blatt-2-thermal-use-of-the-under
ground-ground-source-heat-pump-systems.
\شماره٪٪۲۲
Bayer, P., de Paly, M. and Beck, M., 2014. Strategic optimization
of borehole heat exchanger field for seasonal geothermal heating
and cooling. {\it Appl. Energy}, {\it 136}, pp.445-453.
https://doi.org/10.1016/j.apenergy.2014.09.029.
\شماره٪٪۲۳
Retkowski, W., Ziefle, G. and Th\"{o}ming, J., 2015. Evaluation of different
heat extraction strategies for shallow vertical ground-source
heat pump systems. {\it Appl. Energy}, {\it 149}, pp.259-271.
https://doi.org/10.1016/j.apenergy.2015.03.004.
\شماره٪٪۲۴
Dehghan, B., Sisman, A. and Aydin, M. 2016. Parametric investigation
of helical ground heat exchangers for heat pump applications.
{\it Energy Build}, {\it 127}, pp.999-1007.
https://doi.org/10.1016/j.enbuild.2016.06.064.
\شماره٪٪۲۵
Loveridge, F. and Powrie, W., 2014. G-Functions for multiple interacting
pile heat exchangers. {\it Energy}, {\it 64}, pp.747-757.
https://doi.org/10.1016/j.energy.2013.11.014.
\شماره٪٪۲۶
Alberdi-Pagola, M., Poulsen, S.E., Jensen, R.L. and et al., 2019.
Thermal design method for multiple precast energy piles. {\it Geothermics},
{\it 78}, pp.201-210.
https://doi.org/10.1016/j.geothermics.2018.12.007.
\شماره٪٪۲۷
Loveridge, F. and Powrie, W.,
2013. Temperature response functions (G-functions)
for single pile heat exchangers. {\it Energy}, {\it
57}, pp.554-564.
https://doi.org/10.1016/j.energy.2013.04.060.
\شماره٪٪۲۸
You, T. and Yang, H., 2020. Influences of different factors on the
three-dimensional heat transfer of spiral-coil energy pile group
with seepage. {\it Int. J. Low-Carbon Technol}, {\it 15}(3), pp.458-470.
https://doi.org/10.1093/ijlct/ctaa006.
\شماره٪٪۲۹
Xu, B.O., Zhang, H. and Chen, Z., 2020. Study on heat transfer performance
of geothermal pile foundation heat exchanger with 3-U pipe configuration.
{\it Int. J. Heat Mass Transf}, {\it 147}, p.119020.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119020.
\شماره٪٪۳۰
Brettmann, T. and Amis, T.,
2011. Thermal conductivity evaluation of a pile group using geothermal
energy piles.
{\it In Geo-Frontiers 2011: Advances in Geotechnical Engineering},
pp.499-508.
\شماره٪٪۳۱
Caulk, R., Ghazanfari, E. and McCartney, J.S., 2016. Parameterization
of a calibrated geothermal energy pile model. {\it Geomech. Energy
Environ}, {\it 5}, pp.1-15.
http://dx.doi.org/10.1016/j.gete.2015.11.001.
\شماره٪٪۳۲
Cui, Y. and Zhu, J., 2017. 3D transient heat transfer numerical analysis
of multiple energy piles. {\it Energy Build},
{\bf 134}, pp.129-142.
https://doi.org/10.1016/j.enbuild.2016.10.032.
\شماره٪٪۳۳
Cui, Y. and Zhu, J., 2018. Year-round performance assessment of a
ground source heat pump with multiple energy piles. {\it Energy Build},
{\it 158}, pp.509-524.
https://doi.org/10.1016/j.enbuild.2017.10.033.
\شماره٪٪۳۴
Kong, L.P., Qiao, L., Xiao, Y.Y. and et al., 2019. A study on
heat transfer characteristics and pile group influence of enhanced
heat transfer energy piles. {\it J. Build. Eng}, {\it 24},
p.100768.
https://doi.org/10.1016/j.jobe.2019.100768.
\شماره٪٪۳۵
Lyu, W., Pu, H. and Chen, J., 2020. Thermal performance of an energy
pile group with a deeply penetrating u-shaped heat exchanger.
{\it Energies}, {\it 13}(21), 5822.
http://dx.doi.org/10.3390/en13215822.
\شماره٪٪۳۶
Rotta Loria, A.F. and Laloui, L., 2016. The interaction factor method
for energy pile groups. {\it Computers and Geotechnics}, {\it
80}, pp.121-137.
https://doi.org/10.1016/j.compgeo.2016.07.002.
\شماره٪٪۳۷
Saggu, R. and Chakraborty, T., 2016. Thermomechanical response of geothermal
energy pile groups in sand. {\it Int. J. Geomechanic}, {\it 16}(4),
p. 04015100.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000567.
\شماره٪٪۳۸
Di Donna, A., Rotta Loria, A.F. and Laloui, L., 2016. Numerical study
of the response of a group of energy piles under different combinations
of thermo-mechanical loads. {\it Computers and Geotechnics}, {\it 72}, pp.
126-142.
https://doi.org/10.1016/j.compgeo.2015.11.010.
\شماره٪٪۳۹
Imani, F. and Heydari, Sh., 2017. Investigating the amount of energy
consumption of an underground building compared to a similar
model on the surface of the earth in the climates of Tehran,
Yazd and Tarizb. {\it Two quarterly magazines of Iranian architecture},
{\it 13}, pp.89-105 (spring and summer). [In Persian].
\شماره٪٪۴۰
Bidarmaghz, A., Narsilio, G.A., Johnston, I.W. and et al., 2016.
The importance of surface air temperature fluctuations on long-term
performance of vertical ground heat exchangers. {\it Geomechanic
Energy Environments}, {\it 6}, pp.35-44.
https://doi.org/10.1016/j.gete.2016.02.003.