\شماره٪٪۱
Gholi por, R. and Izadi fard, R., 2011. Investigation of flexural
behavior of reinforced concrete beams (against explosive loading)
Real scale test (FRP reinforced with master thesis). Master
Thesis, Malek Ashtar University of Technology
[In Persian].
\شماره٪٪۲
Zhang, B., Masmoudi, R. and Benmokrane, B., 2004. Behavior of one-way
concrete slabs reinforced with CFRP grid reinforcements. {\it Constr.
Build. Mater}, {\it 18}(8), pp.625-635.
https://doi.org/10.1016/j.conbuildmat.2004.04.007.
\شماره٪٪۳
Mosalam, Kh.M. and Mosallam, A.S., 2001. Nonlinear transient analysis
of reinforced concrete slabs subjected to blast loading and retrofitted
with CFRP composites. {\it Composites Part B: Engineering}, {\it 32}(8),
pp.623-636.
DOI:10.1016/S1359-8368(01)00044-0.
\شماره٪٪۴
Zhang, G., Kishi, N., Mikami, H. and et al., 2007. Experimental
parameter study on shear load carrying capacity of RC beams reinforced
with AFRP sheets in shear. {\it J. Struct. Eng}, {\it 53}, pp.1040-1049
\شماره٪٪۵
Muszynski, L.C. and Purcell, M.R., 2003. Composite reinforcement
to strengthen existing concrete structures against air blast.
{\it J. Compos. Constr}, {\it 7}(2), pp.93-97.
DOI:10.1061/(ASCE)1090-0268(2003)7:2(93).
\شماره٪٪۶
Silva, P.F. and Lu, B.,
2009. Blast resistance capacity of reinforced concrete
slab. {\it J. Struct. Eng}, {\it 135}(6), pp.708-716.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000011.
\شماره٪٪۷
Silva, P.F. and Lu, B., 2007. Improving the blast resistance capacity
of RC slab with innovative composite materials. {\it Compos. Part
B-Eng}, {\it 38}(5.6), pp.523-534.
https://doi.org/10.1016/j.compositesb.2006.06.015.
\شماره٪٪۸
Lan, Sh., Lok, T.-S. and Heng, L., 2005. Composite structural panels
subjected to explosive loading. {\it Constr. Build. Mater.}, {\it 19}(5),
pp.387-395.
https://doi.org/10.1016/j.conbuildmat.2004.07.021.
\شماره٪٪۹
Schenker, A., Anteby, L., Gal, E. and et al., 2008.
Full
scale field tests of concrete slabs subjected to blast loads.
{\it Int. J. Impact Eng}, {\it 35}(3), pp.184-198.
DOI:10.1016/j.ijimpeng.2006.12.008.
\شماره٪٪۱۰
Farhadi, K., Afkar, A. and Kamari, M.N., 2015. Numerical simulation
of metallic honeycomb sandwich panel structures under dynamic
loads. {\it J. Mater. Environ. Sci}, {\it 6}(7), pp.2013-2020.
\شماره٪٪۱۱
Tomte, A., 2015. Energy absorption and damage prevention in a submerged
floating tunnel during internal blast loading. Master Thesis,
Norwegian University of Science and Technology.
\شماره٪٪۱۲
Zhou, H., Wang, Y., Wang, X. and et al., 2015. Energy absorption
of graded foam subjected to blast: A theoretical approach. {\it
Mater. Design},
{\it 84}, pp.351-358.
DOI:10.1016/j.matdes.2015.06.124.
\شماره٪٪۱۳
Xie, B., Tang, L., Liu, Y. and et al., 2014. Research
on the energy absorption properties of aluminum foam composite
panels with enhanced ribs subjected to uniform distributed loading.
{\it J. Sandwich Struc. Mater}, {\it 17}(2), pp.1-13.
https://doi.org/10.1177/1099636214555046.
\شماره٪٪۱۴
Homae, T., Sugiyama, Y., Wakabayashi, K. and et al., 2016.
Water and sand for blast pressure mitigation around
a subsurface magazine. {\it Sci. Tech. Energetic Mater}, {\it 77}(1), pp.
18-21.
\شماره٪٪۱۵
Rutner, M.P. and Wright, J.P., 2016. Duality of energy absorption
and inertial effects: Optimized structural design for blast loading.
{\it Int. J. Protective Struct}, {\it 7}(1), pp.18-44.
DOI:10.1177/2041419615622726.
\شماره٪٪۱۶
Gilkie, R.C. and Sundararaj, P., 1971. The impact resistance of
plastics sandwich constructions using low density urethane foam
cores. {\it J. Cell. Plast}, {\it 7}(6), pp.313-318.
https://doi.org/10.1177/0021955X7100700605.
\شماره٪٪۱۷
Nayak, S.K., 2010. Optimization of honeycomb core sandwich panel
to mitigate the effects of air blast loading. MS. Thesis, The
Pennsylvania State University.
\شماره٪٪۱۸
Nurick, G.N. and Martin, J.B., 1989. Deformation of thin plates
subjected to impulsive loading-a review part II: Experimental
studies. {\it Int. J. Impact. Eng}, {\it 8}(2), pp.171-186.
https://doi.org/10.1016/0734-743X(89)90015-8.
\شماره٪٪۱۹
Nurick, G.N. and Martin, J.B., 1989. Deformation of thin plates
subjected to impulsive loading-a review: Part i: Theoretical
considerations. {\it Int. J. Impact. Eng}, {\it 8}(2), pp.159-170.
https://doi.org/10.1016/0734-743X(89)90014-6.
\شماره٪٪۲۰
Rajendran, R. and Lee, J.M., 2009. Blast loaded plates. {\it Mar.
Struct}, {\it 22}(2), pp.99-127.
https://doi.org/10.1016/j.marstruc.2008.04.001.
\شماره٪٪۲۱
Jacob, N., Yuen, S.C.K., Nurick, G. and et al., 2004.
Scaling aspects of quadrangular plates subjected
to localised blast loads-experiments and predictions. {\it Int.
J. Impact. Eng.}, {\it 30}(8.9), pp.1179-1208.
DOI:10.1016/j.ijimpeng.2004.03.012.
\شماره٪٪۲۲
Xue, Z. and Hutchinson, J.W., 2003. Preliminary assessment of sandwich
plates subject to blast loads. {\it Int. J. Mech. Sci}, {\it 45}(4), pp.
687-705.
DOI:10.1016/S0020-7403(03)00108-5.
\شماره٪٪۲۳
Mori, L.F., Queheillalt, D.T., Wadley, H.N.G. and et al., 2009.
Deformation and failure modes of I-core sandwich structures
subjected to underwater impulsive loads. {\it Exp. Mech}, {\it 49}, pp.
257-275.
DOI:10.1007/s11340-008-9166-9.
\شماره٪٪۲۴
Valdevit, L., Wei, Z., Mercer, C. and et al., 2006.
Structural performance of near-optimal sandwich panels with
corrugated cores. {\it Int. J. Solids. Struct}, {\it 43}(16), pp.4888-4905.
DOI:10.1016/j.ijsolstr.2005.06.073.
\شماره٪٪۲۵
Jing, L., Yang, F., Wang, Z. and Zhao, L., 2013. A numerical simulation
of metallic cylindrical sandwich shells subjected to air Bblast
loading. {\it Lat. Am. J. Solids Stru}, {\it 10}(3), pp.631-645.
DOI:10.1590/S1679-78252013000300010.
\شماره٪٪۲۶
Vatani Oskouei, A. and Kiakojouri, F., 2015. Non-linear dynamic
analysis of steel hollow I-core sandwich panel under air blast
loading. {\it Civil. Eng. Civil. Infr}, {\it 48}(2.2), pp.323-344.
DOI:10.7508/ceij.2015.02.008.
\شماره٪٪۲۷
Peyman, S. and Ghazanfarinia, S., 2007. Defence and secutity structures.
{\it MAUT Press}, [In Persian].
\شماره٪٪۲۸
Soleimani, S.M., Ghareeb, N.H. and Shaker, N.H., 2018. Modeling,
simulation and optimization of steel sandwich panels under blast
loading. {\it American Journal of Engineering and Applied Sciences},
{\it 11}(3), pp.1130-1140.
DOI:10.3844/ajeassp.2018.1130.1140.
\شماره٪٪۲۹
Sabzevari, S. and Shahabian, F., 2018. Optimum selection of corrugated
sandwich panels shape and materials subjected to blast loading.
{\it J. of Structural and Construction Engineering}, {\it 5.2}(17), pp.39-52
[In Persian].
DOI:10.22065/jsce.2018.126299.1531.
\شماره٪٪۳۰
Han, F., Chen, H., Jiang, K. and et al., 2014.
Influences of geometric patterns of 3D spacer fabric on tensile
behavior of concrete canvas. {\it Construction and Building Materials},
{\it 65},
pp.620-629.
DOI:10.1016/j.conbuildmat.2014.05.041.
\شماره٪٪۳۱
Hegger, J. and Voss, S., 2008. Investigations on the bearing behaviour
and application potential of textile reinforced concrete. {\it Engineering
Structures}, {\it 30}(7), pp.2050-2056.
https://doi.org/10.1016/j.engstruct.2008.01.006.
\شماره٪٪۳۲
Peyman, S. and Ghazanfarinia, S., 2007. Defence and secutity structures.
pp.25-149. [In Persian].
\شماره٪٪۳۳
Bulson, Ph.S., 1997. {\it Explosive Loading of Engineering Structures}, (1st
ed). CRC Press. https://doi.org/10.4324/9780203473863.
CRC Press.
\شماره٪٪۳۴
Brode, H.L.,
1995. Numerical solutions of spherical blast waves. {\it Journal
of Applied Physics}, {\it 26}(6), pp.766-775.
https://doi.org/10.1063/1.1722085.
\شماره٪٪۳۵
Fayyaz, M. and Ghorban Nejad, A. and Khosravi, F., 2019. Numerical
investigation of damages on concrete canvas shell under near-field
blast. {\it Scientific J. of Advanced Defence Science Technology},
{\it 10}(1), pp.79-87. [In Persian].
\شماره٪٪۳۶
Shokrchi, M., Emdadi, A. and Ghali Leyber, N., 1999. Lightweigfht
concrete, knowledge, technology, applications. University of
Tehran Press, [In Persian].
\شماره٪٪۳۷
Neville, A.M. and Brooks, J.J., 1987. Concrete technology. {\it England,
Longman Scientific} \& {\it Technical}, p.438.
\شماره٪٪۳۸
Clarke, J.L., 2005. {\it Structural Lightweight Aggregate Concrete/John
L. clarke}. Glasgow, UK: Blackie Academic \& Professional, an
Imprint of Chapman \& Hall.
\شماره٪٪۳۹
Shafigh, P., Hassanpour, M., Razavi, V. and et al., 2011. An
investigation of the flexural behaviour of reinforced lightweight
concrete beams. {\it International Journal of Physical Sciences}, {\it
6}(10),
pp.2414-2421. [In Persian].
\شماره٪٪۴۰
Fathollah, S. and Shafigh., P., 2012. High-strength lightweight
concrete using leca, silica fume, and limestone. {\it Arabian Journal
for Science and Engineering}, {\it 37}(7), pp.1885-1893.
DOI:10.1007/s13369-0285-3 [In Persian].
\شماره٪٪۴۱
Johansson, L., 1997. The use of LECA (light expanded clay aggregrates)
for the removal of phosphorus from wastewater. {\it Water Science
and Technology}, {\it 35}(5), pp.87-93.
DOI:10.1016/S0273-1223(97)00056-5.
\شماره٪٪۴۲
Lekang, O.I. and Kleppe, H., 2000. Efficiency of nitrification
in trickling filters using different filter media. {\it Aquacultural
Engineering}, {\it 21}(3), pp.181-199.
DOI:10.1016/S0144-8609(99)00032-1.
\شماره٪٪۴۳
Zhou, H., Shi, H., Lai, Zh. and et al., 2020.
Migration
and phase change study of leaking molten salt in tank foundation
material. {\it Applied Thermal Engineering}, {\it 170}, p.114968.
DOI:10.1016/j.applthermaleng.2020.114968.
\شماره٪٪۴۴
Zhou, H., Shi, H., Zhu, Y. and et al., 2020. ``An experimental
investigation of temperature distribution and heat loss in molten
salt tanks in concentrating solar power plants. {\it Journal of Renewable
and Sustainable Energy}, {\it 12}(1), p.14101.
https://doi.org/10.1063/1.5131071.
\شماره٪٪۴۵
Zhou, H., Shi, H., Zhu, Y. and et al., 2020. An experimental
investigation of temperature distribution and heat loss in molten
salt tanks in concentrating solar power plants. {\it Journal of Renewable
and Sustainable Energy}, {\it 12}(1), p.14101.
https://doi.org/10.1063/1.5131071.
\شماره٪٪۴۶
Roces-Alonso, E.A., Gonz\'{a}lez-Galindo, J. and Estaire, J.,
2021. Experimental
study on grain failure of lightweight expanded clay aggregate
under uniaxial and biaxial load conditions. {\it Powder Technology}, {\it
383},
pp.542-553.
DOI:10.1016/j.powtec.2021.01.052.
\شماره٪٪۴۷
Koohmishi, M. and Palassi, M., 2016. Evaluation of the strength
of railway ballast using point load test for various size fractions
and particle shapes. {\it Rock Mechanics and Rock Engineering}, {\it 49}(7),
pp.2655-2664.
DOI:10.1007/s00603-016-0914-3.
\شماره٪٪۴۸
Manso, J., Marcelino, J. and Caldeira, L., 2021. Single-particle
crushing strength under different relative humidity conditions. {\it Acta
Geotechnica}, {\it 16}(3), pp.749-761.
DOI:10.1007/s11440-020-01065-w.
\شماره٪٪۴۹
Gundepudi, M.K., Sankar, B.V., Mecholsky, J.J. and et al., 1997.
Stress analysis of brittle spheres under multiaxial loading. {\it Powder
Technology}, {\it 94}(2), pp.153-161.
https://doi.org/10.1016/S0032-5910(97)03307-X.
\شماره٪٪۵۰
Salami, Y., Dano, Ch., Hicher, P.Y. and et al., 2015.
The effects of the coordination on the fragmentation of a
single grain. {\it In IOP Conference Series: Earth and Environmental
Science}, {\it 26}(1), p.012015.
DOI:10.1088/1755-1315/26/1/012015.
\شماره٪٪۵۱
Todisco, M.C., Wang, W., Coop, M.R. and et al., 2017. Multiple
contact compression tests on sand particles.
{\it Soils and Foundations}, {\it 57}(1),
pp.126-140.
https://doi.org/10.1016/j.sandf.2017.01.009.
\شماره٪٪۵۲
Zhang, Y., 2018. Comportement m\'{e}canique du mat\'{e}riau granulaire en
tenant compte de la rupture des particules. PhD Diss, Universit
de Lorraine.
\شماره٪٪۵۳
Hegger, J. and Voss, S., 2008. Investigations on the bearing behaviour
and application potential of textile reinforced concrete. {\it Engineering
Structures}, {\it 30}(7), pp.2050-2056.
https://doi.org/10.1016/j.engstruct.2008.01.006.
\شماره٪٪۵۴
Colombo, I.G., Magri, A., Zani, G. and et al., 2013.
Erratum to: Textile reinforced concrete: Experimental investigation
on design parameters. {\it Materials and Structures},
{\it 46}(11), pp.1953-1971.
\شماره٪٪۵۵
Peled, A., Cohen, Z., Pasder, Y. and et al., 2008.
Influences
of textile characteristics on the tensile properties of warp
knitted cement based composites. {\it Cement and Concrete Composites},
{\it 30}(3),
pp.174-183.
https://doi.org/10.1016/j.cemconcomp.2007.09.001.
\شماره٪٪۵۶
Peled, A., 2011. Strain hardening behavior of textile reinforced
concrete (TRC). {\it In Proc. of the SHCC2-Rio. Conference}, pp.45-52.
\شماره٪٪۵۷
Hartig, J., H\"{a}u\ss ler-Combe, U. and Schicktanz, K., 2008. Influence
of bond properties on the tensile behaviour of textile reinforced
concrete. {\it Cement and Concrete Compositesm}, {\it 30}(10), pp.898-906.
DOI:10.1016/j.cemconcomp.2008.08.004.
\شماره٪٪۵۸
Fayyaz, M., Ghorban Nejad, A. and Khosravi, F., 2019. Numerical
investigation of damages on concrete canvas shell under near-field
blast.
{\it Journal of Advanced Defense Science and Technology}, {\it 10}(1),
pp.79-87. [In Persian].
\شماره٪٪۵۹
Han, F., Chen, H., Jiang, K. and et al., 2014.
Influences of geometric patterns of 3D spacer fabric on tensile
behavior of concrete canvas. {\it Construction and Building Materials},
{\it 65},
pp.620-629.
DOI:10.1016/j.conbuildmat.2014.05.041.
\شماره٪٪۶۰
Fayyaz, O., Ghorban Nejad, A. and Khosravi, F., 2019. Numerical
investigation of damages on concrete canvas shell under near-field
blast.
{\it Journal of Advanced Defense Science and Technology}, {\it 10}(1),
pp.79-87. [In Persian].
\شماره٪٪۶۱
Ai, H.A. and Ahrens, T.J., 2006. Simulation of dynamic response
of granite: A numerical approach of shock-induced damage beneath
impact craters. {\it International Journal of Impact Engineering},
{\it 33}(1.12),
pp.1-10.
https://doi.org/10.1016/j.ijimpeng.2006.09.046.
\شماره٪٪۶۲
ics of explosion and its use elsevier.
Henrych, J., 1979. The dynam
\شماره٪٪۶۳
Zhang, F., Chen, H., Li, X. and et al., 2017.
Experimental study of the mechanical behavior of FRP-reinforced
concrete canvas panels. {\it Composite Structures}, {\it 176}, pp.608-616.
DOI:10.1016/j.compstruct.2017.05.072.
\شماره٪٪۶۴
Zukri, A., Nazir, R., Mat Said, Kh.N. and et al., 2018. Physical
and mechanical properties of lightweight expanded clay aggregate
(LECA). {\it In MATEC Web of Conferences}, EDP Sciences, {\it 250}, p.01016.
\شماره٪٪۶۵
Caldeira, L.M.M.S. and das Neves, E.M., 2015. Mechanical characterization
of lightweight expanded clay aggregate materials for modeling
their geotechnical
behavior. {\it Journal of Materials in Civil Engineering}, {\it 27}(11),
p.04015027.
DOI:10.1061/(ASCE)MT.1943-5533.0001286.
\شماره٪٪۶۶
Zukri, A., 2021. Settlement analysis of treated soft clay using
LECA replacement through numerical modelling. {\it Construction},
{\it 1}(2), pp.76-84.
https://doi.org/10.15282/construction.v1i2.6614.
\شماره٪٪۶۷
Syst\`{e}mes, Dassault., 2008. ABAQUS: User manual, Retrieved from
http://130.149.89.49:2080/v6.11/books/usb/default.htm?\\
startat=pt05ch23s04abm48.h
tml.
\شماره٪٪۶۸
UFC regulations.