\شماره٪٪۱
Shoji, D., He, Z., Zhang, D. and et al., 2022. The greening of
engineered cementitious composites (ECC): A review. {\it Construction
and Building Materials}, {\it 327}, p.126701.
\شماره٪٪۲
Li, V.C., Fischer, G. and Lepech, M.D., 2004. Crack-resistant concrete
material for transportation construction. {\it In Proceedings of
the Transportation Research Board 83rd Annual Meeting}.
\شماره٪٪۳
Turk, K. and Nehdi, M.L., 2021. Flexural toughness of sustainable
ECC with high-volume substitution of cement and silica sand.
{\it Construction and Building Materials}, {\it 270}, p.121438.
\شماره٪٪۴
Li, V.C., Fischer, G., Kim, Y.Y. and et al., 2003.
Durable link slabs for jointless bridge decks
based on strain-hardening cementitious composites. Report for
Michigan Department of Transportation RC-1438.
\شماره٪٪۵
Li, V.C., 2008. {\it Engineered cementitious composites (ECC) material,
structural, and durability performance}. Concrete Construction
Engineering Handbook, Chapter 24, Ed. E. Nawy, CRC Press.
\شماره٪٪۶
Li, M., Sahmaran, M. and Li, V.C., 2007. Effect of cracking and
healing on durability of engineered cementitious composites under
marine environment. {\it High Performance Fiber Reinforced Cement
Composites Conference (HPFRCC5)}, pp.313-322.
\شماره٪٪۷
Ma, Z., Liu, M., Tang, Q. and et al., 2020. Chloride
permeability of recycled aggregate concrete under the coupling
effect of freezing-thawing, elevated temperature or mechanical
damage. {\it Construction and Building Materials}, {\it
237}, p.117648.
\شماره٪٪۸
Lepech, M.D., Li, V.C., Robertson, R.E. and et al., 2008. Design
of green engineered cementitious composites for improved sustainability.
{\it ACI Materials Journal}, {\it 105}(6), pp.567-575.
\شماره٪٪۹
Kanda, T., Zhong, L.Z. and Li, V.C., 2000. Tensile stress-strain
modeling of pseudo strain hardening cementitious composite.
{\it Journal of Materials in Civil Engineering}, {\it 12}(2), pp.147-156.
\شماره٪٪۱۰
Yoo, D.Y., Oh, T., Kang, M.C. and et al., 2021. Enhanced
tensile ductility and sustainability of high-strength strain-hardening
cementitious composites using waste cement kiln dust and oxidized
polyethylene fibers. {\it Cement and Concrete Composites}, {\it 120},
p.104030.
\شماره٪٪۱۱
Sharbatdar, M.K. and Tajari, A., 2021. Experimental in-plane seismic
strengthening of masonry infilled reinforced concrete frames
by engineered cementitious composites (ECC). {\it Construction and
Building Materials}, {\it 293}, p.123529.
\شماره٪٪۱۲
Sharbatdar, M.K. and Tajari, A. 2021. Engineered cementitious
composites effects on seismic strengthening of non-ductile RC
frames with masonry infills. {\it Sharif Journal of Civil Engineering},
{\it 37.2}(1.2), pp.25-37.
\شماره٪٪۱۳
Hajiaghamemar, M., Mostofinejad, D. and Bahmani, H., 2022. High
volume of slag and PP fibers in engineered cementitious composites
(ECC): microstructure and mechanical properties. {\it Magazine of
Concrete Research}, pp.1-44.
\شماره٪٪۱۴
Wang, Q., Lai, M.H., Zhang, J. and et al., 2020. Greener
engineered cementitious composite (ECC)- the use of pozzolanic
fillers and unoiled PVA fibers. {\it Construction and Building Materials},
{\it 247}, p.118211.
\شماره٪٪۱۵
Pan, Z., Wu, C., Liu, J. and et al., 2015. Study on
mechanical properties of cost-effective poly vinyl alcohol engineered
cementitious composites (PVA-ECC). {\it Construction and Building
Materials}, {\it 78}, pp.397-404.
\شماره٪٪۱۶
Zhang, S., Li, V.C. and Ye, G., 2020. Micromechanics-guided development
of a slag/fly ash-based strain-hardening geopolymer composite.
{\it Cement and Concrete Composites}, {\it 109}, p.103510.
\شماره٪٪۱۷
Termkhajornkit, P., Nawa, T., Yamashiro, Y. and et al., 2009. Self-healing
ability of fly ash-cement systems. {\it Cement and Concrete Composites},
{\it 31}(3), pp.198-203.
\شماره٪٪۱۸
Yang, E.H., Yang, Y. and Li, V.C., 2007. Use of high volumes of
fly ash to improve ECC mechanical properties and material greenness.
{\it ACI Materials Journal}, {\it 104}(6), pp.620-628.
\شماره٪٪۱۹
ASTM C150./C150M, 2022. Standard specification for Portland cement.
ASTM International, West Conshohocken, PA, USA.
\شماره٪٪۲۰
http://www.ardestancement.com/.
\شماره٪٪۲۱
https://www.esfahansteel.com/.
\شماره٪٪۲۲
ASTM C1240., 2020. Standard specification for silica fume used
in cementitious mixtures. ASTM International, West Conshohocken,
PA, USA.
\شماره٪٪۲۳
http://www.impasco.gov.ir/.
\شماره٪٪۲۴
ASTM, C494., 2008. Standard specification for chemical admixtures
for concrete. ASTM International, West Conshohocken, PA, USA.
\شماره٪٪۲۵
ASTM C109., 2007. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or
[50-mm] Cube Specimens). ASTM International, West
Conshohocken, PA.
\شماره٪٪۲۶
ASTM C109., 2007. Standard test method for compressive strength
of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens).
ASTM International, West Conshohocken, PA.
\شماره٪٪۲۷
ASTM C1018., 2017. Standard test for flexural toughness and first-crack
strength of fiber reinforced concrete (Using Beam with third-point
loading). ASTM International, West Conshohocken, PA, USA.
\شماره٪٪۲۸
ASTM D3039., 2014. Standard test method for tensile properties
of polymer matrix composite materials. {\it ASTM International},
West Conshohocken, PA, USA.
\شماره٪٪۲۹
ASTM C1437., 2020. Standard test method for flow of hydraulic
cement mortar. ASTM International, West Conshohocken, PA, USA.
\شماره٪٪۳۰
Saucier, F., Pigeon, M. and Plante, P., 1990. Air-void stability,
part III: Field tests of superplasticized concretes. {\it Materilas
Journal}, {\it 87