\شماره٪٪۱
Fallahian, S., Joghataie, A. and Kazemi, M.T., 2018. Structural
damage detection using time domain responses and teaching-learning-based
optimization (TLBO) algorithm. {\it Scientia Iranica},
{\it 25}(6), pp.3088-3100.
DOI:10.24200/sci.2017.4238.
\شماره٪٪۲
Rezvani, K., NMM, M. and Sabour, M.H., 2018. A comparison of some
methods for structural damage
detection. {\it Scientia Iranica}, {\it 25}(3),
pp.1312-1322.
DOI:10.24200/sci.2017.4494.
\شماره٪٪۳
Chatterjee, P.K., Datta, T.K. and Surana, C.S., 1994. Vibration
of continuous bridges under moving vehicles. {\it Journal of Sound
and Vibration}, {\it 169}(5), pp.619-632.
https://doi.org/10.1006/jsvi.1994.1037.
\شماره٪٪۴
Lee, H.P., 1996. The dynamic response of a Timoshenko beam subjected
to a moving mass. {\it Journal of Sound and Vibration}, {\it 198}(2), pp.
249-256.
https://doi.org/10.1006/jsvi.1996.0567.
\شماره٪٪۵
Khadri, Y., Tekili, S., Daya, El M. and et al., 2009. Analysis
of the dynamic response of bridges under moving loads. {\it International
Review of Mechanical Engineering}, {\it 3}(1), pp.91-99.
\شماره٪٪۶
Brunell, G. and Kim, Y.J., 2013. Effect of local damage on the
behavior of a laboratory-scale steel truss bridge. {\it Engineering
Structures}, {\it 48}, pp.281-291.
DOI:10.1016/j.engstruct.2012.09.017.
\شماره٪٪۷
Kim, C.W., Kitauchi, S. and Sugiura, K., 2013. Damage detection
of a steel truss bridge through on-site moving vehicle experiments.
{\it In SMAR-2nd International Conference on Smart Monitoring, Assessment
and Rehabilitation of Civil Structures}, Istanbul, Turkey.
\شماره٪٪۸
Lee, E.T., Eun, H.C. and Kim, T., 2011. Damage detection of truss
structure based on the variation in axial stress and strain energy
predicted from incomplete measurements.
{\it Journal of Vibro Engineering}, {\it 13}(2),
pp.173-185.
\شماره٪٪۹
Siriwardane, S.C., 2015. Vibration measurement-based simple technique
for damage detection of truss bridges. {\it Case Studies in Engineering
Failure Analysis}, {\it 4}, pp.50-58.
DOI:10.1016/j.csefa.2015.08.001.
\شماره٪٪۱۰
Li, J. and Hao, H., 2016. Health monitoring of joint conditions
in steel truss bridges with relative displacement sensors.
{\it Measurement}, {\it 88}, pp.360-371.
https://doi.org/10.1016/j.measurement.2015.12.009.
\شماره٪٪۱۱
Kim, Y.W., Kim, N.I. and Lee, J., 2016. Damage identification
of truss structures based on force method and free vibration
analysis. {\it Advances in Structural Engineering}, {\it 19}(1), pp.3-13.
DOI:10.1177/1369433215618300.
\شماره٪٪۱۲
Chang, K.C. and Kim, C.W., 2016. Modal-parameter identification
and vibration-based damage detection of a damaged steel truss
bridge. {\it Engineering Structures}, {\it 122}, pp.156-173.
DOI:10.1016/j.engstruct.2016.04.057.
\شماره٪٪۱۳
Moradipour, P., Chan, T.H. and Gallage, C., 2017. Benchmark studies
for bridge health monitoring using an improved modal strain energy
method. {\it Procedia Engineering}, {\it 188}, pp.194-200.
DOI:10.1016/j.proeng.2017.04.474.
\شماره٪٪۱۴
Kumar, K., Biswas, P.K. and Dhang, N., 2019. Damage diagnosis
of steel truss bridges under varying environmental and loading
conditions. {\it Int. J. Acoust. Vibr}, {\it 24}(1), pp.56-67.
DOI:10.20855/ijav.2019.24.11255.
\شماره٪٪۱۵
Mustafa, S., Matsumoto, Y. and Yamaguchi, H., 2018. Vibration-based
health monitoring of an existing truss bridge using energy-based
damping evaluation. {\it Journal of Bridge Engineering}, {\it
23}(1), p.04017114.
DOI:10.1061/(ASCE)BE.1943-5592.0001159.
\شماره٪٪۱۶
Unno, K., Mikami, A. and Shimizu, M., 2019. Damage detection of
truss structures by applying machine learning algorithms. {\it GEOMATE
Journal}, {\it 16}(54), pp.62-67.
DOI:10.21660/2019.54.4840.
\شماره٪٪۱۷
Mousavi, A.A., Zhang, C., Masri, S.F. and et al., 2020. Structural
damage localization and quantification based on a CEEMDAN hilbert
transform neural network approach. {\it A Model Steel Truss Bridge
Case study: Sensors}, {\it 20}(5), p.1271.
https://doi.org/10.3390/s20051271.
\شماره٪٪۱۸
Bernardini, L., Carnevale, M. and Collina, A., 2021. Damage identification
in warren truss bridges by two different time-frequency algorithms.
{\it Applied Sciences}, {\it 11}(22), p.10605.
DOI:10.3390/app112210605.
\شماره٪٪۱۹
Ji, B., Xiong, Q., Xing, P. and et al., 2021. Bolt loosening
localization at flange joints using wind-induced response for
high-rise tower. {\it International Journal of Steel Structures}, {\it
21}(5),
pp.1790-1803.
DOI:10.1007/s13296-021-00535-5.
\شماره٪٪۲۰
Ghannadi, P. and Kourehli, S.S., 2022. Efficiency of the slime
mold algorithm for damage detection of large-scale structures. {\it The
Structural Design of Tall and Special Buildings}, {\it 31}(14), p.1967.
DOI:10.1002/tal.1967.
\شماره٪٪۲۱
Ghannadi, P., Kourehli, S.S. and Mirjalili, S., 2022. The application
of PSO in structural damage detection: An analysis of the previously
released publications (2005-2020). {\it Frattura ed Integrit\`{a}
Strutturale}, {\it 16}(62),
pp.460-489.
DOI:10.3221/IGF-ESIS.62.32.
\شماره٪٪۲۲
Corbally, R. and Malekjafarian, A., 2022. Bridge damage detection
using operating deflection shape ratios obtained from a passing
vehicle. {\it Journal of Sound and Vibration}, {\it 537}, p.117225.
DOI:10.1016/j.jsv.2022.117225.
\شماره٪٪۲۳
Mostafa, N., Maio, D.D., Loendersloot, R. and et al., 2022. Railway
bridge damage detection based on extraction of instantaneous
frequency by Wavelet Synchrosqueezed Transform. {\it Advances In
Bridge Engineering}, {\it 12}(3), p.27.
DOI:10.1186/s43251-022-00063-0.
\شماره٪٪۲۴
Hajizeinalibiouki, Y., 2018. Flexural Rigidity Estimation Using
Noisy Static Influence Lines.
{\it Civil and Environmental Engineering Theses and
Dissertations}, 1.
\شماره٪٪۲۵
Zeinali, Y. and Story, B.A., 2017. Framework for flexural rigidity
estimation in Euler-Bernoulli beams using deformation influence
lines. {\it Infrastructures}, {\it 2}(4), p.23.
DOI:10.3390/infrastructures2040023.
\شماره٪٪۲۶
Zaurin, R. and Necati Catbas, F., 2011. Structural health monitoring
using video stream, influence lines, and statistical analysis.
{\it Structural Health Monitoring}, {\it 10}(3), pp.309-332.
DOI:10.1177/1475921710373290.
\شماره٪٪۲۷
\v{S}timac, I., Mihanovi\'{c}, A. and Ko\v{z}ar, I., 2006. Damage detection
from analysis of displacement influence lines. {\it In International
Conference on Bridges}, Dubrovnik, pp.1001-1008.
\شماره٪٪۲۸
Zhang, R.F., Zhang, X.M. and Qi, C.X., 2012. Application of the
influence line on the bridge testing. {\it In Advanced Materials
Research., Trans. Tech. Publications Ltd.}, {\it 594}, pp.1586-1589.
DOI:10.4028/www.scientific.net/AMR.594-597.1586.
\شماره٪٪۲۹
Zhu, S., Chen, Z., Cai, Q. and et al., 2014. Locate
damage in long-span bridges based on stress influence lines and
information fusion technique. {\it Advances in Structural Engineering},
{\it 17}(8), pp.1089-1102.
DOI:10.1260/1369-4332.17.8.1089.
\شماره٪٪۳۰
\v{S}timac, I., Mihanovi\'{c}, A. and Ko\v{z}ar, I., 2006. Damage detection
from analysis of displacement influence lines. {\it In International
Conference on Bridges}, Dubrovnik, pp.1001-1008.
\شماره٪٪۳۱
Y. L., Li, Q. and Cai, Q.L., 2015. Damage detection in long suspension
bridges using stress influence lines. {\it Journal of Bridge Engineering},
{\it 20}(3), p.05014013.
DOI:10.1061/(ASCE)BE.1943-5592.0000681.
\شماره٪٪۳۲
Zeinali, Y. and Story, B.A., 2017. Framework for flexural rigidity
estimation in Euler-Bernoulli beams using deformation influence
lines. {\it Infrastructures}, {\it 2}(4), p.23.
DOI:10.3390/infrastructures2040023.
\شماره٪٪۳۳
Yunkai, Z., Qingli, X., Guohua, L. and et al., 2021. Damage
identification of multi-span bridge structure based on the recognition
of influence line. {\it In E3S Web of Conferences}, {\it 233}, p.03002 EDP
Sciences.
DOI:10.1051/e3sconf/202123303002.
\شماره٪٪۳۴
Zhang, Y., Xie, Q., Li, G. and et al., 2021. Multi-damage identification
of multi-span bridges based on influence lines. {\it Coatings}, {\it 11}(8),
p.905.
DOI:10.3390/coatings11080905.
\شماره٪٪۳۵
Azim, M.R. and G\"{u}l, M., 2021. Development of a novel damage
detection framework for truss railway bridges using operational
acceleration and strain response. {\it Vibration}, {\it 4}(2), pp.422-443.
DOI:10.3390/vibration4020028.
\شماره٪٪۳۶
Cheng, Q., Ruan, X., Wang, Y. and et al., 2022. Serious damage
localization of continuous girder bridge by support reaction
influence lines. {\it Buildings}, {\it 12}(2), p.182.
https://doi.org/10.3390/buildings12020182.
\شماره٪٪۳۷
Kordi, A. and Mahmoudi, M., 2022. Damage detection in truss bridges
under moving load using time history response and members influence
line diagrams. {\it Civil Engineering Infrastructures Journal}, {\it 55}(1),
pp.183-194.
10.22059.DOI:CEIJ.2021.314109.1723
\شماره٪٪۳۸
https://www.opkon.com.tr/Content/media/file-ce927f18.pdf.
\شماره٪٪۳۹
Gonz\'{a}lez, A. and Hester, D., 2013. An investigation into the acceleration
response of a damaged beam-type structure to a moving force.
{\it Journal of Sound and Vibration}, {\it 332}(13), pp.3201-3217.
DOI:10.1016/j.jsv.2013.01.024.