\شماره٪٪۱
Freeman, S.A., 1975. Evaluations of existing buildings for seismic
risk-a case study of puget sound naval shipyard. {\it In Proc. 1st
US Nat. Conf. on Earthquake Eng.}, Bremerton, Washington.
\شماره٪٪۲
Freeman, S.A., 1998. Development and use of capacity spectrum method.
{\it In the 6th US National Conference on Earthquake Engineering/EERI},
Seattle, Washington.
\شماره٪٪۳
Council, A.T., 1996. Seismic evaluation and retrofit of concrete
buildings. Report No. SSC 96-01, ATC-40.
\شماره٪٪۴
Lai, M., Li, Y. and Zhang, C., 1992. Analysis method of multi-rigid-body
model for earthquake responses of shear-type structure. {\it In Proc.,
10th WCEE Conf}.
\شماره٪٪۵
Hall, J.F., Eeri, M., Heaton, Th.H. and et al., 1995. Near-source
ground motion and its effects on flexible buildings. {\it Earthquake
Spectra}, {\bf 11}(4), pp.569-605.
https://doi.org/10.1193/1.1585828.
\شماره٪٪۶
Iwan, D., 1997. Drift spectrum: measure of demand for earthquake
ground motions. {\it J. Struct. Eng}, {\bf 123}(4), pp.397-404.
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(397).
\شماره٪٪۷
Huang, C.T., 2003.C onsiderations of multimode struc-\\tural response
for near-field earthquakes. {\it J. Eng. Mech}, \\{\it 129}(4), pp. 458-467. \\
https://doi.org/10.1061/(ASCE)0733-9399(2003) 129:4\\(458).
\شماره٪٪۸
Miranda, E., 1999. Approximate seismic lateral deformation demands
in multistory buildings. {\it J. Struct.\\ Eng}, {\it 125}(4), pp.417-425.\\
https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4\\(417).
\شماره٪٪۹
Nakashima, M., Ogawa, K. and Inoue, K., 2002. Generic frame model
for simulation of earthquake responses of steel moment frames.
{\it Earthq. Eng. Struct. Dyn}, {\it 31}(3), pp.671-692.
DOI:10.1002/eqe.148
\شماره٪٪۱۰
Khaloo, A.R. and Khosravi, H., 2013. Modified fish-bone model:
A simplified MDOF model for simulation of seismic responses of
moment resisting frames. {\it Soil Dyn. Earthq. Eng}, {\it 55}, pp.195-210.
https://doi.org/10.1016/j.soildyn.2013.09.013.
\شماره٪٪۱۱
Soleimani, R., Khosravi, H. and Hamidi, H., 2019. Substitute Frame
and adapted fish-bone model: Two simplified frames representative
of RC moment resisting frames. {\it Eng. Struct}, {\it 185}, pp.68-89.
https://doi.org/10.1016/j.engstruct.2019.01.127.
\شماره٪٪۱۲
Haghighat, A. and Sharifi, A., 2018. Evaluation of modified fish-bone
model for estimating seismic demands of irregular MRF structures.
{\it Per. Poly. Civ. Eng}, {\it 62}(3), pp.800-811.
https://doi.org/10.3311/PPci.11640.
\شماره٪٪۱۳
Jam\v{s}ek, A. and Dol\v{s}ek, M., 2020. Seismic analysis of older
and contemporary reinforced concrete frames with the improved
fish-bone model. {\it Engineering Structures}, {\it 212}, p.110514.
https://doi.org/10.1016/j.engstruct.2020.110514.
\شماره٪٪۱۴
Soleimani, R. and Hamidi, H., 2021. General gubstitute frame model
(GSF) for efficient estimation of seismic demands of steel and
RC moment frames. {\it Engineering Structures}, {\it 246}, p.113031.
https://doi.org/10.1016/j.engstruct.2021.113031.
\شماره٪٪۱۵
ASCE., 2016. Minimum design loads for buildings and other structures.
ASCE/SEI 7-16, American Society of Civil Engineers, Reston, Virginia.
\شماره٪٪۱۶
NIST., 2017. Guidelines for nonlinear structural analysis for
design of buildings. Part IIa - Steel Moment Frames, (Gaithersburg,
MD), NIST GCR 17-917-46v2.
\شماره٪٪۱۷
Lignos, D.G. and Krawinkler, H., 2011. Deterioration modeling
of steel components in support of collapse prediction of steel
moment frames under earthquake loading. {\it Journal of Structural
Engineering}, {\bf 137}(11), pp.1291-1302.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
\شماره٪٪۱۸
Lignos, D.G., Hartloper, A.R., Elkady, A. and et al., 2019.
Proposed updates to the ASCE 41 nonlinear
modeling parameters for wide-flange steel columns in support
of performance-based seismic engineering. {\it Journal of Structural
Eng}, {\it 145}(9), pp.04019083.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
\شماره٪٪۱۹
Federal Emergency Management Agency (FEMA), FEMA P695., 2009. Quantification
of building seismic performance factors. (Washington, DC, USA)