\شماره٪٪۱
Neville, A.M. and Brooks, J.J., 2013. {\it Tecnologia do Concreto},
Porto Alegre, Bookman.
\شماره٪٪۲
Araujo, D.L., Danin, A.R., Melo, M.B. and et al., 2013.
Influence of steel fibers on the reinforcement bond of straight
steel. {\it Revista IBRACON de Estruturas e Materriais - RIEM}, {\it 6}(2),
pp.307-338.
\شماره٪٪۳
Neville, A.M., 2012. {\it Properties of Concrete}, 5th ed., Harlow,
United Kingdom.
\شماره٪٪۴
Naderi, M., 2008. Adhesion of different concrete repair systems
exposed to different environments. {\it J. Adhesion}, {\it 84}(3), pp.78-104.
https://doi.org/10.1080/00218460801888433.
\شماره٪٪۵
Lin, H., Zhao, Y., Yang, J.Q. and et al., 2019.
Effects of the corrosion of main bar and stirrups on the
bond behavior of reinforcing steel bar. {\it Constr. Build. Mater.},
{\it 225}, pp.13-28.
DOI:10.1016/j.conbuildmat.2019.07.156.
\شماره٪٪۶
Koulouris, K. and Apostolopoulos, Ch., 2020. An experimental study
on effects of corrosion and stirrups spacing on bond behavior
of reinforced concrete. {\it Metals}, {\it 10}(10), p.1327.
DOI:10.3390/met10101327.
\شماره٪٪۷
Alok, A.D., Dhpande, D. and Kum0ar, R., 2020. Temperature effects
on the bond behavior between deformed steel reinforcing bars
and hybrid fiber-reinforced strain-hardening cementitious composite.
{\it Cement and Concrete Composites}, {\it 233}, p.117337.
DOI:10.1016/j.conbuildmat.2019.117337.
\شماره٪٪۸
Wanjie, Z., Jiongfeng, L., Dawei, L. and et al., 2020. Bond
behavior between steel rebar and RCA concrete after exposure
to elevated temperatures. {\it Advances in Materials Science and
Engineering}, {\it 2020}, Article ID 5230295, p.10.
DOI:10.1155/2020/5230295.
\شماره٪٪۹
Berthet, J.F., Yurtdas, I., Delmas, Y. and et al., 2011. Evaluation
of the adhesion resistance between steel and concrete by push
out test. {\it International Journal of Adhesion} \& {\it Adhesives},
{\it 31}(2),
pp.75-83.
DOI:10.1016/j.ijadhadh.2010.11.004.
\شماره٪٪۱۰
Yousef, R.A., Mahmoud, G., Aref, A.A. and et al., 2020. Bond
behavior between concrete and steel rebars for stressed elements.
{\it Ain Shams Engineering Journal}, {\it 12}(2), pp.1-9.
DOI:10.1016/j.asej.2020.10.001.
\شماره٪٪۱۱
Chu, S.H. and Kwan, A.K.H., 2019. A new bond model for reinforcing
bars in steel fibre reinforced concrete. {\it Cement and Concrete
Composites}, {\it 104}, p.103405.
DOI:10.1016/j.cemconcomp.2019.103405.
\شماره٪٪۱۲
Huang, L., Lihua, X., Chi, Y. and et al., 2019. Bond
strength of deformed bar embedded in steel-polypropylene hybrid
fiber reinforced concrete. {\it Construction and Building Materials},
{\it 218}, pp.176-192.
DOI:10.1016/j.conbuildmat.2019.05.096.
\شماره٪٪۱۳
Naderi, M., 2007. New twist-off method for the evaluation of in-situ
strength of concrete. {\it Journal of Testing and Evaluation}, {\it 35}(6),
pp.602-608.
ISSN: 0090-3973.
\شماره٪٪۱۴
SaberiVarzaneh, A. and Naderi, M., 2022. The effect of initial
compression on the interface of repair/concrete and the evaluation
of the compressive strength of mortars. {\it Journal of Structural
and Construction Engineering}, {\it 9}(5), pp.163-179.
DOI:10.22065/JSCA.2021.252708.2260.
\شماره٪٪۱۵
SaberiVarzaneh, A. and Naderi, M., 2022. Bond strength of fiber-reinforced
mortar and concrete interface under pre-stress. {\it
Journal of Rehabilitation
in Civil Engineering}, {\it 11.2}(30), pp.113-130.
DOI:10.22075/JRCE.2022.25326.1572.
\شماره٪٪۱۶
ASTM C1583., 2004. Standard test method for tensile strength of
concrete surfaces and the bond strength or tensile strength of
concrete repair and overlay materials by direct tension (pull-off
method). West Conshohocken PA, American Society for Testing
and Materials.
\شماره٪٪۱۷
SaberiVarzaneh, A. and Naderi, M., 2021. Determination of shrinkage,
tensile and compressive strength of repair mortars and their
adhesion on the concrete substrate using ``Twist{-}off'' and ``Pull{-}off''
methods. {\it Iranian Journal of Science and Technology, Transactions
of Civil Engineering},{\it 45}, pp.2377-2395.
DOI:10.1007/s40996-020-00548-w.
\شماره٪٪۱۸
SaberiVarzaneh, A. and Naderi, M., 2020. Numerical and experimental
study of semi-destructive tests to evaluate the comperessive
and flexural strength of polymer- modified mortars and their
adhesion to the concrete substrate. {\it Revista Rom\^{a}n\u{a} de Materiale
/ Romanian Journal of Materials}, {\it 50}(4), pp.537-544.
\شماره٪٪۱۹
CEB-FIP Model Code. for concrete structures. 2010.
{\it Comit\'{e} Euro-International
du B\'{e}ton,}
, Secretariat Permanent, Case Postale 88, CH-1015 Lausanne,
Walraven,p.318.
\شماره٪٪۲۰
ASTM 127-15., 2015. Standard test method for relative density
(specific gravity) and absorption of fine aggregate., ASTM
International,
Wst Conshohocken, PA.
\شماره٪٪۲۱
ASTM C136-01., 2001. Standard test method for sieve analysis of
fine and coarse aggregates. ASTM International, West Conshohocken,
PA.
\شماره٪٪۲۲
ASTM C157., 2008. Test method for length change of hardened hydraulic
cement mortar and concrete. West Conshohocken PA, American Society
for Testing and Materials.
\شماره٪٪۲۳
ASTM C490., 2011. Standard practice for use of apparatus for the
determination of length change of hardened cement paste, mortar,
and concrete. West Conshohocken PA, American Society for Testing
and Materials.
\شماره٪٪۲۴
ASTM C109., 2013. Standard test method for compressive strength
of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens).
American Society for Testing and Materials.