\شماره٪٪۱
Martin, GR, Lam, IP.,
2000. Earthquake resistant design of foundations-Retrofit
of existing foundations. In: ISRM International Symposium.
\شماره٪٪۲
Gajan, S, Raychowdhury, P, Hutchinson, TC, Kutter, BL, Stewart
JP., 2010. Application and validation of practical tools for nonlinear
soil-foundation interaction analysis. {Earthq Spectra, 26(1)}, pp.111-29.
https://doi.org/10.1193/1.3263242.
\شماره٪٪۳
Moghaddasi, M, Carr, A, Cubrinovski, M, Pampanin, S, Chase, JG,
Chatzigogos, CT, and et al., 2012. The effects of soil-foundation interface
nonlinearity on seismic soil-structure interaction analysis.
{\it In: New Zealand Society for Earthquake Engineering Conference},
Christchurch, New Zealand.
\شماره٪٪۴
Gazetas, G, Anastasopoulos, I, Apostolou, M., 2007. Shallow and deep
foundations under fault rupture or strong seismic shaking. In:
Earthquake geotechnical engineering. Springer, p.185-215.
\شماره٪٪۵
Pecker, A., 2006. Enhanced seismic design of shallow foundations:
example of the Rion Antirion bridge. {\it 4th Athenian Lect Geotech
Eng, 1}.
\شماره٪٪۶
Paolucci, R, Shirato, M, Yilmaz, MT., 2008. Seismic behaviour of shallow
foundations: Shaking table experiments vs numerical modelling.
{\it Earthq Eng} \& {\it Struct Dyn}, {\it 37(4)}, pp.577-95.
https://doi.org/10.1002/eqe.773.
\شماره٪٪۷
Gajan, S, Kutter, BL., 2008. Capacity, settlement, and energy dissipation
of shallow footings subjected to rocking. {\it J Geotech Geoenvironmental
Eng, 134(8)}, pp.1129-41.
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1129).
\شماره٪٪۸
Ugalde, JA, Kutter, BL, Jeremic, B, Gajan, S., 2007. Centrifuge modeling
of rocking behavior of bridges on shallow foundations. {\it In: Proceedings
of the 4th International Conference Earthquake Geotechnical Engineering
Thessaloniki, Greece, Paper}, p.25-8.
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1129).
\شماره٪٪۹
Deng, L, Kutter, BL, Kunnath, SK., 2012. Centrifuge modeling of bridge
systems designed for rocking foundations. {\it
J Geotech geoenvironmental
Eng, 138(3)}, pp.335-44.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000605.
\شماره٪٪۱۰
Drosos, V, Georgarakos, T, Loli, M, Anastasopoulos, I, Zarzouras,
O, Gazetas G., 2012.
Soil-foundation-structure interaction with mobilization
of bearing capacity: Experimental study on sand. {\it
J Geotech Geoenvironmental
Eng, 138(11)}, pp.1369-86.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000705.
\شماره٪٪۱۱
Anastasopoulos, I, Loli, M, Georgarakos, T, Drosos, V., 2013. Shaking
table testing of rocking-isolated bridge pier on sand. {\it J Earthq
Eng, 17(1)}, pp.1-32.
https://doi.org/10.1080/13632469.2012.705225.
\شماره٪٪۱۲
Actions, SD. Part 5: Earthquake Actions, NZS1170. 5., 2004. New Zeal
Stand.
\شماره٪٪۱۳
Anastasopoulos, I, Gazetas, G, Loli, M, Apostolou, M, Gerolymos
N., 2010. Soil failure can be used for seismic protection of structures.
{\it Bull Earthq Eng, 8(2)}, pp.309-26.
\شماره٪٪۱۴
Paolucci, R, Figini, R, Petrini, L., 2013. Introducing dynamic nonlinear
soil-foundation-structure interaction effects in displacement-based
seismic design. {\it Earthq spectra, 29(2)}, pp.475-96.
https://doi.org/10.1193/1.4000135.
\شماره٪٪۱۵
Deng, L, Kutter, BL, Kunnath, SK., 2014. Seismic design of rocking
shallow foundations: displacement-based methodology. {\it J Bridg
Eng, 19(11)}, 4014043.
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000616.
\شماره٪٪۱۶
Pecker, A, Paolucci, R, Chatzigogos, C, Correia, AA, Figini, R., 2014.
The role of non-linear dynamic soil-foundation interaction on
the seismic response of structures.
{\it Bull Earthq Eng, 12(3)}, pp.1157-76.
\شماره٪٪۱۷
Adamidis, O, Gazetas, G,
Anastasopoulos, I, Argyrou C., 2014. Equivalent-linear
stiffness and damping in rocking of circular and strip foundations.
{\it Bull Earthq Eng, 12(3)}, pp.1177-200.
\شماره٪٪۱۸
Nouri, AR, Anastasopoulos, I, Vetr, MG, Kalantari, A., 2016. Efficiency
of low-rise steel rocking frames founded on conventional and
rocking foundations. {\it Soil Dynamics and Earthquake Engineering
84}, pp.190-203.
https://doi.org/10.1016/j.soildyn.2016.02.002.
\شماره٪٪۱۹
Yeganeh, N, Fatahi, B., 2019. Effects of choice of soil constitutive
model on seismic performance of moment-resisting frames experiencing
foundation rocking subjected to near-field earthquakes. {\it Soil
Dynamics and Earthquake Engineering, 121}, pp.442-59.
https://doi.org/10.1016/j.soildyn.2019.03.027.
\شماره٪٪۲۰
Sadjadi, M, Fadaee, M, Ghannad, MA, Jahankhah, H., 2021. Numerical study
of stiff diaphragm walls used to improve the performance of rocking
foundation systems. {\it Journal of Earthquake Engineering,
25(13)}, pp.2628-50.
https://doi.org/10.1080/13632469.2019.1631233.
\شماره٪٪۲۱
Sadjadi, M, Fadaee, M, Ghannad, MA, Jahankhah, H., 2022. Seismic performance
of deformable rocking soil-structure systems subjected to pulse-type
excitations. {\it Journal of Earthquake Engineering}, pp.1-29.
https://doi.org/10.1080/13632469.2022.2134232.
\شماره٪٪۲۲
Loli, M, Knappett, JA, Brown, MJ, Anastasopoulos I, Gazetas
G., 2015. Centrifuge testing of a bridge pier on a rocking isolated
foundation supported on unconnected piles. {\it In 6th International
Conference on Earthquake Geotechnical Engineering}, p.362.
\شماره٪٪۲۳
Ha, JG, Ko, KW, Jo, SB, Park, HJ, Kim, DS., 2019. Investigation of seismic
performances of unconnected pile foundations using dynamic centrifuge
tests. {\it Bulletin of Earthquake Engineering, 17}, pp.2433-58.
\شماره٪٪۲۴
Cunha, RP, Poulos, HG, Small, JC., 2001. Investigation of design alternatives
for a piled raft case history. {\it J Geotech geoenvironmental Eng,
127(8)}, pp.635-41.
\شماره٪٪۲۵
Poulos, HG., 2001. Piled raft foundations: Design and applications.
{\it Geotechnique, 51(2)}, pp.95-113.
\شماره٪٪۲۶
Reul, O, Randolph, MF., 2004. Design strategies for piled rafts subjected
to nonuniform vertical loading. {\it J Geotech Geoenvironmental Eng,
130(1)}, pp.1-13.
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(1).
\شماره٪٪۲۷
Nguyen, DDC, Kim, D-S, Jo, S-B., 2014. Parametric study for optimal
design of large piled raft foundations on sand. {\it Comput Geotech,
55}, pp.14-26.
https://doi.org/10.1016/j.compgeo.2013.07.014.
\شماره٪٪۲۸
Rabiei, M, Choobbasti, AJ., 2016. Piled raft design strategies for
high rise buildings. {\it Geotechnical and Geological Engineering,
34(1)}, pp.75-85.
\شماره٪٪۲۹
Bandyopadhyay, S, Sengupta, A, Parulekar, YM., 2020. Behavior of a
combined piled raft foundation in a multi-layered soil subjected
to vertical loading. {\it Geomech. Eng, 21(4)}, pp.379-90.
http://dx.doi.org/10.12989/gae.2020.21.4.379.
\شماره٪٪۳۰
Bhartiya, P, Chakraborty, T, Basu, D., 2022. Load-settlement response
of piled raft foundations in sand. {\it Geomechanics and Geoengineering,
17(4)}, pp.1260-83.
https://doi.org/10.1080/17486025.2021.1928767.
\شماره٪٪۳۱
Asefa, B, Assefa, E, Pantelidis, L, Sachpazis, C., 2022. Pile configuration
optimization on the design of combined piled raft foundations.
{\it Modeling Earth Systems and Environment, 8(3)}, pp.3461-72.
\شماره٪٪۳۲
Katzenbach, R, Arslan, U, Reul, O., 2020. Soil-structure-interaction
of a piled raft foundation of a 121 m high office building on
loose sand in Berlin. InDeep Foundations on Bored and Auger Piles
pp.215-221. CRC Press.
http://dx.doi.org/10.1201/9781003078517-28.
\شماره٪٪۳۳
Reinert, ET, Brandenberg, SJ, Stewart, JP, Moss, RE. Dynamic
field fest of a model levee founded on peaty organic soil using
an eccentric mass shaker.
\شماره٪٪۳۴
Farahmand, K, Lashkari, A, Ghalandarzadeh, A., 2016. Firoozkuh sand:
introduction of a benchmark for geomechanical studies. {\it Iran J
Sci Technol Trans Civ Eng, 40(2)}, pp.133-48.
http://dx.doi.org/10.1007/s40996-016-0009-0.