\شماره٪٪۱
Japanese Road Association (JRA)., 1996. Specification for Highway
Bridges. Part V, Seismic Design. Tokyo, Japan.
\شماره٪٪۲
Tokimatsu, K., Mizuno, H. and Kakurai, M., 1996. Building damage
associated with geotechnical problems, {\it Soils and Foundations, 36},
pp.219-234. https://doi.org/10.3208/sandf.36.Special\_219.
\شماره٪٪۳
Bhattacharya, S. and Madabhushi, S., 2008. A critical review
of methods for pile design in seismically liquefiable soils. {\it Bulletin
of Earthquake Engineering, 6(3)}, pp.407-446.
\شماره٪٪۴
Tokimatsu, K., Tamura, S., Suzuki, H. and Katsumata, K., 2012.
Building damage associated with geotechnical problems in the
2011 tohoku pacific earthquake. {\it Soils and Foundations, 52(5)},
pp.956-974. https://doi.org/10.1016/j.sandf.2012.11.014.
\شماره٪٪۵
Zhang, X., Tang, L., Ling, X., Chan, A.H.C., and Lu, J., 2018.
Using peak ground velocity to characterize the response of soil-pile
system in liquefying ground. {\it Engineering Geology. 240}, pp.62-73.
https://doi.org/10.1016/j.enggeo.2018.04.011.
\شماره٪٪۶
Han, Z., Cheng, X. and Ma, Q., 2016. An experimental study on
dynamic response for MICP strengthening liquefiable sands. {\it Earthquake
Engineering and Engineering Vibration, 15(4)}, pp.673-679.
http://dx.doi.org/10.1007/s11803-016-0357-6.
\شماره٪٪۷
Knappett, J. and Madabhushi, S., 2009. Seismic bearing capacity
of piles in liquefiable soils. {\it Soils and Foundations, 49(4)}, pp.525-535.
https://doi.org/10.3208/sandf.49.525.
\شماره٪٪۸
Zhang, X., Tang, L., Ling, X. and Chan, A., 2020. Critical buckling
load of pile in liquefied soil. {\it Soil Dynamics and Earthquake
Engineering, 135}, p.106197. https://doi.org/10.1016/j.soildyn.2020.106197.
\شماره٪٪۹
Motamed, R., Towhata, I., Honda, T., Tabata, K. and Abe, A.,
2013. Pile group response to liquefaction-induced lateral spreading:
E-Defense large shake table test. {\it Soil Dynamics and Earthquake
Engineering, 51}, pp.35-46. https://doi.org/10.1016/j.soildyn.2013.04.007.
\شماره٪۱۰
Zhanfang, H., Xiaohong, B., Chao, Y. and Yanping, W., 2020. Vertical
bearing capacity of a pile-liquefiable sandy soil foundation under horizontal
seismic force. {\it PloS One, 15(3)}, p.e0229532.
http://dx.doi.org/10.1371/journal.pone.0229532.
\شماره٪٪۱۱
Chen, Y., Zhang, Z. and Liu, H., 2017. Study of the seismic performance
of hybrid A-frame micropile/MSE (mechanically stabilized earth)
wall. {\it Earthquake Engineering and Engineering Vibration, 16(2)},
pp.275-295. https://ui.adsabs.harvard.edu/link\_gateway/2017EEEV
16..275C/doi:10.1007/s11803-017-0382-0.
\شماره٪٪۱۲
Galandarzadeh, A. and Ahmadi, A., 2012. Effects of anisotropic
consolidation and stress reversal on the liquefaction resistance
of sands and silty sands. {\it Geotech Eng J SEAGS AGSSEA, 43(2)}, pp.33-39.
\شماره٪٪۱۳
Mo, T., Wu, Q., Li, D.Q. and Du, W., 2022. Influence of ground
motion characteristics (velocity pulse and duration) on the pile
responses in liquefiable soil deposits. {\it Soil Dynamics and Earthquake
Engineering, 159}, p.107330. https://doi.org/10.1016/j.soildyn.2022.107330.
\شماره٪٪۱۴
Baker, J.W., 2007. Quantitative classification of near-fault
ground motions using wavelet analysis. {\it Bulletin of the Seismological
Society of America, 97(5)}, pp.1486-1501. https://doi.org/10.1785/0120060255.
\شماره٪٪۱۵
Chopra, A.K. and Chintanapakdee, C., 2001. Comparing response
of SDF systems to near-fault and far-fault earthquake motions
in the context of spectral regions. {\it Earthquake Engineering and
Structural Dynamics, 30(12)}, pp.1769-1789. https://doi.org/10.1002/eqe.92.
\شماره٪٪۱۶
Kalkan, E. and Kunnath, S.K., 2006. Effects of fling step and
forward directivity on seismic response of buildings. {\it Earthquake
Spectra, 22(2)}, pp.367-390. https://doi.org/10.1193/1.2192560.
\شماره٪٪۱۷
UBC, U.B.C., 1997. Uniform building code. In Int. Conf. Building
Officials.
\شماره٪٪۱۸
Tothong, P. and Cornell, C.A., 2008. Structural performance assessment
under near-source pulse-like ground motions using advanced ground
motion intensity measures. {\it Earthquake Engineering} \& {\it Structural
Dynamics, 37(7)}, pp.1013-1037. http://dx.doi.org/10.1002/eqe.792.
\شماره٪٪۱۹
Pant, D.R. and Maharjan, M., 2016. On selection and scaling of
ground motions for analysis of seismically isolated structures. {\it Earthquake
Engineering and Engineering Vibration, 15(4)}, pp.633-648.
https://ui.adsabs.harvard.edu/link\_gateway/2016EEEV
15..633P/doi:10.1007/s11803-016-0354-9.
\شماره٪٪۲۰
Jalali, R.S. and Tokmechi, Z., 2016. A note on the surface motion
of a semi-cylindrical canyon for incident cylindrical SH waves
radiated by a finite fault. {\it Earthquake Engineering and Engineering
Vibration, 15(3)}, pp.445-455.
https://ui.adsabs.harvard.edu/link\_gateway/2016EEEV
15..445J/doi:10.1007/s11803-016-0335-z.
\شماره٪٪۲۱
Abbasi Karafshani, S., Ardakani, A. and Yakhchalian, M., 2017.
An investigation on the effect of near-field pulse-like ground
motions on the seismic response of a soil-pile-structure system. {\it Sharif
Journal of Civil Engineering, 33(2)}, pp.115-125.
https://doi.org/10.24200/j30.2017.4545.
\شماره٪٪۲۲
Davoodi, M., Jafari, M. and Hadiani, N., 2013. Seismic response
of embankment dams under near-fault and far-field ground motion
excitation. {\it Engineering Geology, 158}, pp.66-76.
https://doi.org/10.1016/j.enggeo.2013.02.008.
\شماره٪٪۲۳
Saeedi, M., Dehestani, M., Shooshpasha, I., Ghasemi, G. and Saeedi,
B., 2018. Numerical analysis of pile-soil system under seismic
liquefaction. {\it Engineering Failure Analysis, 94}, pp.96-108.
https://doi.org/10.1016/j.engfailanal.2018.07.031.
\شماره٪٪۲۴
Rajeswari, J. and Sarkar, R., 2020. Estimation of transient forces
in single pile embedded in liquefiable soil. {\it International Journal
of Geomechanics, 20(9)}, p.06020023.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001788.
\شماره٪٪۲۵
Itasca, F.D., 2021. Fast Lagrangian analysis of continua in 3
dimensions, Version 7.0. Minneapolis, Minnesota, Itasca Consulting
Group, 438.
\شماره٪٪۲۶
Wilson, D.W., 1998. Soil-Pile-Superstructure Interaction in Liquefying
Sand and Soft Clay. Ed: Citeseer.
\شماره٪٪۲۷
WILSON, D., 1998. Soil-pile-Superstructure Interaction In Liquefying
Sand and Soft Clay. University of California Davis, Report, pp.UCD/CGM-98/04.
\شماره٪٪۲۸
Cheng, Z. and Detournay, C., 2021. Formulation, validation and
application of a practice-oriented two-surface plasticity sand
model. {\it Computers and Geotechnics, 132}, p.103984.
https://doi.org/10.1016/j.compgeo.2020.103984.
\شماره٪٪۲۹
Dafalias, Y.F. and Manzari, M.T., 2004. Simple plasticity sand
model accounting for fabric change effects. {\it Journal of Engineering
Mechanics, 130(6)}, pp.622-634.
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
\شماره٪٪۳۰
Arulmoli, K., 1992. VELACS: verification of liquefaction analyses
by centrifuge studies, laboratory testing program. Soil Data
Report. http://dx.doi.org/10.13140/2.1.3740.8320.
\شماره٪٪۳۱
Haldar, S. and Babu, G.S., 2010. Failure mechanisms of pile foundations
in liquefiable soil: Parametric study. {\it International Journal
of Geomechanics, 10(2)}, pp.74-84.
https://doi.org/10.1061/(ASCE)1532-3641(2010)10:2(74).
\شماره٪٪۳۲
Shahir, H., Pak, A., Taiebat, M. and Jeremi\'{c}, B., 2012. Evaluation
of variation of permeability in liquefiable soil under earthquake
loading. {\it Computers and Geotechnics, 40}, pp.74-88.
https://doi.org/10.1016/j.compgeo.2011.10.003.
\شماره٪٪۳۳
Paskaleva, I., Panza, G., Vaccari, F. and Ivanov, P., 2004. Deterministic
modelling for microzonation of Sofia-an expected earthquake
scenario. {\it Acta Geodaetica et Geophysica Hungarica, 39(2)}, pp.275-295.
https://doi.org/10.1556/ageod.39.2004.2-3.10.
\شماره٪٪۳۴
Trifunac, M.D. and Brady, A.G., 1975. A study on the duration
of strong earthquake ground motion. {\it Bulletin of the Seismological
Society of America,
65(3)}, pp.581-626. https://doi.org/10.1785/BSSA065003058.
\شماره٪٪۳۵
Moustafa, A. and Takewaki, I., 2010. Deterministic and probabilistic
representation of near-field pulse-like ground motion. {\it Soil Dynamics
and Earthquake Engineering, 30(5)}, pp.412-422.
https://doi.org/10.1016/j.soildyn.2009.12.013.
\شماره٪٪۳۶
Panza, G.F., La Mura, C., Romanelli, F., and Vaccari, F. 2021. Earthquakes,
Strong-Ground Motion. In Encyclopedia of Solid Earth Geophysics:
Springer, 2021, pp.1-9.