\شماره٪٪۱
Daneti, S.B., Wee, T.H. and Thangayah, T., 2011. Effect of polypropylene
fibers on the shrinkage cracking behavior of
lightweightconcrete. {\it Magazine of Concrete Research}, {\it 63}(11),
pp.871-881. DOI:10.1680/macr.2011.63.11.871.
\شماره٪٪۲
Emin Arsalan, M., 2016. Effects of basalt and glass chopped fibers
addition on fracture energy and mechanical properties of ordinary
concrete: CMOD measurement. {\it Construction and Building Materials},
{\it 114}, pp.383-391. DOI:10.1016/j.conbuildmat.2016.03.176.
\شماره٪٪۳
Haji Karimi, P. and Fallah Hosseini, S., 2017. Investigating the effect
of volume percentage, length and geometric shape of polyolefin
fibers on the mechanical characteristics and fracture characteristics
of high strength concrete. {\it Concrete Research}, {\it 12}(1), pp.59-70
[In Persian]. DOI:10.22124/JCR.2018.10946.1307.
\شماره٪٪۴
Alberti, M., Enfedaque, A. and G\'{a}lvez, J.,
2017. Fibre reinforced
concrete with a combination of polyolefin and steel-hooked fibres.
{\it Composite Structures}, {\it 171}, pp.317-325.
DOI:10.1016/j.compstruct.2017.03.033.
\شماره٪٪۵
Yoo, D.Y., Kim, S.W. and Park, J.J., 2017. Comparative flexural
behavior of ultra-high-performance concrete reinforced with hybrid
straight steel fibers. {\it Construction and Building Materials},
{\it 132}, pp.219-229. DOI:10.1016/j.conbuildmat.2016.11.104.
Pakravn, H., Latifi, M. and Jamshidi, M., 2017. Hybrid short fiber
reinforcement system in concrete: A review. {\it Construction and
Building Materials}, {\it 142}, pp.280-294.
DOI:10.1016/j.conbuildmat.2017.03.059.
\شماره٪٪۷
Kumar, R., Goel, P. and Mathur, R., 2013. Suitability of concrete
reinforced with synthetic fiber for the construction of pavements.
{\it 3rd International Conference on Sustainable Construction Materials
and Technologies}.
\شماره٪٪۸
Bentegri, I., Boukendakdji, O., Kadri, E.H., Ngo, T.T. and Soualhi,
H., 2020. Rheological and tribological behaviors of
polypropylene
fiberre inforced Concrete. {\it Construction and Building Materials},
{\it 261}.
DOI:10.1016/j.conbuildmat.2020.119962.
\شماره٪٪۹
Chen, M., Si, H., Fan, X., Xuan, Y. and Zhang, M., 2022. Dynamic
compressive behaviour of recycled tyre steel fibre reinforced
concrete. {\it Construction and Building
Materials}, {\it 316}, DOI:10.1016/j.conbuildmat.2021.125896.
\شماره٪٪۱۰
Liang, N., You, X., Yan, R., Miao, O. and Liu, X., 2022. Experimental
investigation on the mechanical properties of polypropylene hybrid
fiber-reinforced roller-compacted concrete pavements. {\it International
Journal of Concrete
Structures and Materials}, {\it 16}(1), DOI:10.1186/s40069-021-00493-6.
\شماره٪٪۱۱
Liang, N., Mao, J., Yan, R., Liu, X. and Zhou, X., 2022. Corrosion
resistance of multiscale polypropylene fiber-reinforced concrete
under sulfate attack. {\it Case Studies in
Construction Materials}, {\it 16}, DOI:10.1016/j.cscm.2022.e01065.
\شماره٪٪۱۲
Rajeev Kumar, P., Balaji Shankar, S., Vidhya, K., Sawant,
R.S. and Arun, M., 2021. The steel and polypropylene reinforced concrete
beams: Shear behavior. {\it Materials Today: Proceedings}.
DOI:10.1016/j.matpr.2021.07.181.
\شماره٪٪۱۳
Bahmani, H. and Mostufinejad, D., 2018. Investigation of mechanical
properties of concrete with very high performance reinforced
with polypropylene fibers and synthetic macro fibers. {\it Concrete
Research},
{\it 12}(1), pp.15-26 [In Persian]. DOI:10.14359/51724596.
\شماره٪٪۱۴
Ghasemi, S., Shafaei, J. and Jalali, M., 2022. Experimental evaluation
of the effect of steel and polypropylene fibers and recycled
aggregates on the mechanical properties of concrete. {\it Sharif
Journal of Civil Engineering}, {\it 38-2}(3-2),
pp.21-32. [In Persian]. DOI:10.24200/J30.2022.56347.3074.
\شماره٪٪۱۵
Deng, Q., Zhang, R., Liu, C., Duan, Z. and Xiao, J., 2023. Influence
of fiber properties on abrasion resistance of recycled aggregate
concrete. {\it Construction and Building
Materials}, {\it 362}. DOI:10.1016/j.conbuildmat.2022.129750.
\شماره٪٪۱۶
Ali, A.Y.F., El-Emam, H.M., Seleem, M.H., Sallam, H.E.M.
and Moawad, M., 2022. Effect of crack and fiber length on mode 1 fracture
toughness of matrix-cracked FRC beams. {\it Construction and Building
Materials}, {\it 341}, DOI:10.1016/j.conbuildmat.2022.127924.
\شماره٪٪۱۷
Ding, C., Guo, L. and Chen, B., 2020. An optimum Polyvinyl alcohol
fiber length for reinforced high ductility cementitious composites
based on theoretical and experimental analyses. {\it Construction
and Building
Materials}, {\it 259}, DOI:10.1016/j.conbuildmat.2020.119824.
\شماره٪٪۱۸
Pehlivanl{\i}, Z.O. and Uzun, I., 2022. Effect of polypropylene fiber
length on mechanical and thermal properties of autoclaved aerated
concrete. {\it Construction and Building
Materials}, {\it 322}, DOI:10.1016/j.conbuildmat.2022.126506.
\شماره٪٪۱۹
ASTM C33., 2016. Standard specification for concrete aggregates.
\شماره٪٪۲۰
ASTM C150., 2015. Standard specification for portland cement.
\شماره٪٪۲۱
ISIRI 6048., 2017. Determination of compressive strength of cylindrical
specimens-Test methods.
\شماره٪٪۲۲
ASTM C293., 2016. Standard test method for flexural strength
of concrete (Using Simple Beam With Center-Point Loading).
\شماره٪٪۲۳
ASTM C143., 2015. Standard test method for slump of hydraulic-cement
concrete.