\شماره٪٪۱
Lu, Z., Li, J. and Zhou, Y.,
2018. Shaking table test and numerical simulation
on a vertical hybrid structure under seismic excitation. {\it The
Structural Design of Tall and Special Buildings}, {\it 27}, e1497.
https://doi.org/10.1002/tal.1497.
\شماره٪٪۲
Papageorgiou, A. and Gantes, C., 2010. Equivalent modal damping ratios
for concrete/steel mixed structures. {\it Computers} \& {\it structures},
{\it 88}, pp.1124-1136.
https://doi.org/10.1016/j.compstruc.2010.06.014.
\شماره٪٪۳
Papageorgiou, A. and
Gantes, C., 2011. Equivalent uniform damping ratios for linear irregularly
damped concrete/steel mixed structures. {\it Soil Dynamics and Earthquake
Engineering}. {\it 31}, pp.418-430.
https://doi.org/10.1016/j.soildyn.2010.09.010.
\شماره٪٪۴
Huang, W., Qian, J., Zhou, Z. and Fu, Q. 2015. An approach to equivalent
damping ratio of vertically mixed structures based on response
error minimization. {\it Soil Dynamics and Earthquake Engineering},
{\it 72}, pp.119-128.
https://doi.org/10.1016/j.soildyn.2015.02.008.
\شماره٪٪۵
Jiang, Q., Zhou, Z. and Huang, W., 2015. Investigation on the modal strain
energy for dynamic analysis of steel-concrete vertically mixed
structures. {\it Journal of Asian Architecture and Building Engineering},
{\it 14}, pp.671-678.
https://doi.org/10.3130/jaabe.14.671.
\شماره٪٪۶
Hemmati, A. and Kheyroddin., 2011. Investigation of transition story
effect on behavior of vertically habrid buildings. {\it Journal of
Modeling in Engineering}, {\it 9}, pp.57-65. [In Persian].
https://doi.org/10.22075/jme.2017.1596.
\شماره٪٪۷
Sivandi-Pour, A., Gerami, M. and Khodayarnezhad, D., 2014. Equivalent
modal damping ratios for non-classically damped hybrid steel
concrete buildings with transitional storey. {\it Structural Engineering
and Mechanics}, {\it 50}, pp.383-401.
https://doi.org/10.12989/sem.2014.50.3.383.
\شماره٪٪۸
Sivandi-Pour, A., Gerami, M. and Kheyroddin, A., 2016. Uniform damping
ratio for non-classically damped hybrid steel concrete structures.
{\it International Journal of Civil Engineering}, {\it 14}, pp.1-11.
https://doi.org/10.1007/s40999-016-0003-8.
\شماره٪٪۹
Fanaie, N. and Shamloo, S., 2012. Studying seismic behavior of mixed
structures in height, in: Proceedings of the 15th World Conference
on Earthquake Engineering, Lisbon, Portugal, September.
\شماره٪٪۱۰
Fanaie, N. and Shamlou, S.O., 2015. Response modification factor of
mixed structures. {\it Steel and Composite Structures},
{\it 19}, pp.1449-1466.
http://dx.doi.org/10.12989/scs.2015.19.6.1449.
\شماره٪٪۱۱
Uang, C.M., 1991. Establishing R (or R w) and C d factors for
building seismic provisions. {\it Journal of structural Engineering},
{\it 117}. pp.19-28.
https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(19).
\شماره٪٪۱۲
Lu, Z., He, X. and Zhou, Y., 2017. Studies on damping behavior of vertically
mixed structures with upper steel and lower concrete substructures.
{\it The Structural Design of Tall and Special Buildings}, {\it 26},
e1392.
https://doi.org/10.1002/tal.1392.
\شماره٪٪۱۳
Pnevmatikos, N.G., Papagiannopoulos, G.A. and Papavasileiou, G.S., 2019.
Fragility curves for mixed concrete/steel frames subjected to
seismic excitation. {\it Soil Dynamics and Earthquake Engineering},
{\it 116}, pp.709-713.
https://doi.org/10.1016/j.soildyn.2018.09.037.
\شماره٪٪۱۴
Bahri, F., Kafi, M.A. and Kheyroddin, A., 2019. Full-
scale experimental
assessment of new connection for columns in vertically mixed
structures. {\it The Structural Design of Tall and Special Buildings},
{\it 28}, e1629.
https://doi.org/10.1002/tal.1629.
\شماره٪٪۱۵
Moradi, E., Naderpour, H. and Kheyroddin, A. 2020. An experimental
approach for shear strengthening of RC beams using a proposed
technique by embedded through-section FRP sheets. {\it Composite Structures},
{\it 238}, 111988.
https://doi.org/10.1016/j.compstruct.2020.111988.
\شماره٪٪۱۶
Ahmadi, M., Naderpour, H. and Kheyroddin, A., 2014. Utilization of artificial
neural networks to prediction of the capacity of CCFT short columns
subject to short term axial load. {\it Archives of Civil and Mechanical
Engineering}, {\it 14}, pp.510-517.
https://doi.org/10.1016/j.acme.2014.01.006.
\شماره٪٪۱۷
Naderpour, H., Poursaeidi, O. and Ahmadi, M., 2018. Shear resistance
prediction of concrete beams
reinforced by FRP bars using artificial neural networks. {\it Measurement},
{\it 126}, pp.299-308.
https://doi.org/10.1016/j.measurement.2018.05.051.
\شماره٪٪۱۸
Ahmadi, M., Naderpour, H., Kheyroddin, A. 2017. ANN model for predicting
the compressive strength of circular steel-confined concrete.
{\it International Journal of Civil Engineering}, {\it 15}, pp.213-221.
https://doi.org/10.1007/s40999-016-0096-0.
\شماره٪٪۱۹
Pachideh, G. and Ketabdari, H., 2023. Investigation of the mechanical
properties of self-compacting concrete containing recycled steel
springs; experimental and numerical investigation. {\it European Journal
of Environmental and Civil Engineering}, pp.1-20.
https://doi.org/10.1080/19648189.2023.2169355.
\شماره٪٪۲۰
Bagheri, S. and Tayyari, F.,
Evaluation of response modification factor and deflection amplification factor
of steel intermediate moment-resisting frames.
{\it Sharif Journal of Civil Engineering},
{\it 33.2}, pp.119-128. [In Persian].
https://doi.org/10.24200/j30.2017.4561.
\شماره٪٪۲۱
Fadaei, E., Shakib, H. and Azarbakht, A.R., 2019.
Seismic performance of dual steel structures consisting of non-geometrical
irregularity along the height.
{\it Sharif Journal of Civil Engineering}, {\it 35.2},
pp.107-120. [In Persian].
https://doi.org/10.24200/j30.2018.5396.2238.
\شماره٪٪۲۲
SeyyedKazemi, A. and Rahimzadeh Rofooei, F., 2020.
The effect of angle change of diagonal members on r-factor and collapse
fragility curves of mid-rise steel diagrid structures.
{\it Sharif Journal of
Civil Engineering}, {\it 35.2}, pp.39-51. [In Persian].
https://doi.org/10.24200/j30.2018.5434.2245.
\شماره٪٪۲۳
Naderpour, H. and Mirrashid, M., 2020. Moment capacity estimation of
spirally reinforced concrete columns using ANFIS. {\it Complex} \&
{\it Intelligent Systems}, {\it 6}, pp.97-107.
https://doi.org/10.1007/s40747-019-00118-2.
\شماره٪٪۲۴
Hoseini Vaez,
S.R. and Karimi, F., 2019.
Optimum design of steel moment-resisting frames based on performance levels,
using target roof displacement criterion.
{\it Sharif Journal of Civil Engineering}, {\it 35.2}, pp.71-82.
[In Persian].
https://doi.org/10.24200/j30.2018.5196.2212.
\شماره٪٪۲۵
Fathali, M.A. and Vaez, S.R.H., 2020. Optimum performance-based design
of eccentrically braced frames. {\it Engineering Structures}, {\it 202},
109857.
https://doi.org/10.1016/j.engstruct.2019.109857.
\شماره٪٪۲۶
Moradiyan, M., Pachideh, G. and Moshtagh, A., 2022. Study of seismic
behavior and development of fragility curves of divergent braced
frames under successive earthquakes. {\it Journal of Structural and
Construction Engineering}, {\it 8}, pp.156-175. [In Persian].
https://doi.org/10.22065/jsce.2021.263292.2315.
\شماره٪٪۲۷
Tobber, L. and Yang, T., 2021. Seismic design and evaluation of controlled
outriggered rocking wall (CORW) using equivalent energy design
procedure (EEDP). {\it Engineering Structures}, {\it 247}, 113194.
https://doi.org/10.1016/j.engstruct.2021.113194.
\شماره٪٪۲۸
Yang, T., Qiao, T., Tobber, L. and Rodgers, G., 2022. Seismic performance
of controlled outrigger rocking wall system with different energy
dissipation devices. {\it Soil Dynamics and Earthquake Engineering},
{\it 155}, 107179.
https://doi.org/10.1016/j.soildyn.2022.107179.
\شماره٪٪۲۹
Kiani, A., Kheyroddin, A., Kafi, M.A. and Naderpour, H., 2022. Seismic
fragility assessment for mixed concrete/steel buildings considering
the appropriate position of the transition story. {\it Soil Dynamics
and Earthquake Engineering}, {\it 163}, 107552.
https://doi.org/10.1016/j.soildyn.2022.107552.
\شماره٪٪۳۰
Kiani, A., Kheyroddin, A., Kafi, M.A. and Naderpour, H., 2023. Non-linear
study of the method of transition in mixed concrete/steel structures.
{\it Soil Dynamics and Earthquake Engineering}, {\it 170}, 107925.
https://doi.org/10.1016/j.soildyn.2023.107925.
\شماره٪٪۳۱
Elkady, A. and Lignos, D.G., 2014. Modeling of the composite action
in fully restrained beam-to-
column connections: Implications
in the seismic design and collapse capacity of steel special
moment frames. {\it Earthquake Engineering} \& {\it Structural Dynamics},
{\it 43}, pp.1935-1954.
https://doi.org/10.1002/eqe.2430.
\شماره٪٪۳۲
Ghasemi, M., Fanaie, N. and Khorshidi, H., 2021. Seismic performance
factors of a dual system with IMRF and cable-cylinder bracing,
{\it Journal of Building Engineering}, {\it 39}, p.102309.
https://doi.org/10.1016/j.jobe.2021.102309.
\شماره٪٪۳۳
Ghasemi, M., Zhang, C., Khorshidi, H. and Sun, L., 2022. Seismic performance
assessment of steel frames with slack cable bracing systems.
{\it Engineering Structures}, {\it 250}, 113437.
https://doi.org/10.1016/j.engstruct.2021.113437.
\شماره٪٪۳۴
Committee, A., 2019. ACI 318-19: Building code requirements for
structural concrete and commentary. American Concrete Institute:
Farmington Hills, MI, USA.
\شماره٪٪۳۵
A.A. 341-16., 2016. Seismic provisions for structural steel buildings.
Chicago, Illinois, USA: American Institute of Steel Construction
(AISC).
\شماره٪٪۳۶
ASCE., 2006. Minimum design loads and associated criteria for buildings
and other structures (ASCE/SEI 7-16), in, American Society of
Civil Engineers.
\شماره٪٪۳۷
Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L., 2006. OpenSees
command language manual. {\it Pacific Earthquake Engineering Research
(PEER) Center}, {\it 264}, pp.137-158.
\شماره٪٪۳۸
Kheyroddin, A. and Mashhadiali, N., 2018. Response modification factor
of concentrically braced frames with hexagonal pattern of braces.
{\it Journal of Constructional Steel Research}, {\it 148}, pp.658-668.
https://doi.org/10.1016/j.jcsr.2018.06.024.
\شماره٪٪۳۹
Mashhadiali, N. and Kheyroddin, A., 2018. Seismic performance of concentrically
braced frame with hexagonal pattern of braces to mitigate soft
story behavior. {\it Engineering Structures}, {\it 175}, pp.27-40.
https://doi.org/10.1016/j.engstruct.2018.08.036.
\شماره٪٪۴۰
Mashhadiali, N. and Kheyroddin, A., 2019. Quantification of the seismic
performance factors of steel hexagrid structures. {\it Journal of
Constructional Steel Research}, {\it 157}, pp.82-92.
https://doi.org/10.1016/j.jcsr.2019.02.013.
\شماره٪٪۴۱
Mander, J.B., Priestley, M.J. and Park, R., 1988. Theoretical stress-strain
model for confined concrete. {\it Journal of Structural Engineering},
{\it 114}, pp.1804-1826.
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
\شماره٪٪۴۲
Askouni, P.K. and Papagiannopoulos, G.A., 2021. Seismic Behavior of
a Class of Mixed Reinforced Concrete-Steel Buildings Subjected
to Near-Fault Motions. {\it Infrastructures}, {\it 6}(12), p.172.
https://doi.org/10.3390/infrastructures6120172.
\شماره٪٪۴۳
Vamvatsikos, D. and Cornell, C.A., 2002. Incremental dynamic analysis.
{\it Earthquake Engineering} \& {\it structural Dynamics},
{\it 31}, pp.491-514.
https://doi.org/10.1002/eqe.141.
\شماره٪٪۴۴
FEMA, P, 695, 2009. Quantification of seismic performance
factors, FEMA P-695 report. the Applied Technology Council for
the Federal Emergency Management Agency, Washington, DC.
\شماره٪٪۴۵
Jalali, S., Banazadeh, M., Abolmaali, A. and Tafakori, E., 2012. Probabilistic
seismic demand assessment of steel moment frames with side-plate
connections. {\it Scientia Iranica}, {\it 19}, pp.27-40.
https://doi.org/10.1016/j.scient.2011.11.036.
\شماره٪٪۴۶
Naderpour, H., Kiani, A. and Kheyroddin, A., 2020. Structural control
of RC buildings subjected to near-fault ground motions in terms
of tuned mass dampers. {\it Scientia Iranica}, {\it 27}, pp.122-133.
https://doi.org/10.24200/sci.2018.5600.1365.
\شماره٪٪۴۷
Hazus, M., 2011. Multi-hazard loss estimation methodology: Earthquake
model hazus-MH MR5 technical manual. Federal Emergency Management
Agency: Washington, DC, USA.
\شماره٪٪۴۸
Baker, J.W., 2015. Efficient analytical fragility function fitting
using dynamic structural analysis. {\it Earthquake Spectra}, {\it 31},
pp.579-599.
https://doi.org/10.1193/021113EQS025M.
\شماره٪٪۴۹
Kizilarslan, E., Broberg, M., Shafaei, S., Varma, A.H. and Bruneau, M., 2021.
Seismic design coefficients and factors for coupled composite
plate shear walls/concrete filled (CC-PSW/CF). {\it Engineering Structures},
{\it 244}, 112766.
https://doi.org/10.1016/j.engstruct.2021.112766