\شماره٪٪۱
Kramer, S.L., 1996. Geotechnical earthquake engineering. Upper Saddle
River, USA: Prentice-Hall Inc.
\شماره٪٪۲
Baziar, M.H. and Ghannad, Z., 2012. Soil Dynamics.
Tehran, Iran University of Science and Technology. 3$^{rd}$ Edition,
(In Persian).
\شماره٪٪۳
Madhusudhan, B.R., Boominathan, A. and Banerjee, S., 2020. Cyclic simple
shear response of sand-rubber tire chips mixture. {\it Int. J. Geomech,
20(9)}, 04020136.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001761.
\شماره٪٪۴
Mehrannia, N., Kosha, B. and Vafaeian, M.,
2006. Investigating the resistance
and permeability behavior of sand mixture with rubber particles.
{\it In: 7th International Congress of Civil Engineering, Faculty
of Civil Engineering}, Isfahan University of Technology, (In Persian).
\شماره٪٪۵
Humphrey, D.N., et al., 1993. Shear strength and compressibility of
the tyre chips for use as retaining wall backfill. Transportation
Research Record No. 1422, Lightweight Artificial and Waste Materials
for Embankments over Soft Soils, Washington, DC, pp. 29-35 (1993).
\شماره٪٪۶
ASTM, D6270., 2004. Standard Practice for Use of Scrap Tires in Civil
Engineering Applications, Annual Book of ASTM Standards. West
Conshohocken, P.A., USA.
\شماره٪٪۷
Raveshi, M., 2014. Investigating the behavior of coastal walls with
an embankment made of sand-tire mixture under static and seismic
loads, Master's Thesis, Faculty of Civil Engineering. Noshirvani
University of Technology, Babol, (In Persian).
\شماره٪٪۸
Maher, M.H. and Gray, D.H., 1990. Static response of sand reinforced
with randomly distributed fibers. {\it Journal of Geotechnical Engineering,
ASCE, 116(11)}, pp.1661-1677.
https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
\شماره٪٪۹
Bosscher, P.J., Edil, T.B. and Eldin, N.N., 1992. Construction and
performance of a shredded waste tire test embankment. Transportation
Research Record, Washington DC 1345, pp.44-52.
http://onlinepubs.trb.org /Onlinepubs/trr/1992/1345/1345-006.pdf.
\شماره٪٪۱۰
Ahmed, I. and Lovell, C.W., 1993. Rubber soils as lightweight geomaterials,
lightweight artificial and waste materials for embankments over
soft soils, Transportation Research Record.
http://onlinepubs.trb.org /Onlinepubs/trr/1993/1422/1422-010.pdf.
\شماره٪٪۱۱
Bosscher, P.J., Edil, T.B. and Kuraoka, S., 1996. Design of highway
embankment using tire chips. {\it Journal of Geotechnical Engineering,
ASCE, 123(4)}, pp.295-304.
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295).
\شماره٪٪۱۲
Foose, G.J., Benson, C.H. and Bosscher, P.J., 1996. Sand reinforced
with shredded waste tires. {\it Journal of Geotechnical Engineering,
ASCE, 122(9)}, pp.760-767.
https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760).
\شماره٪٪۱۳
Yang, S., Lohnes, R.A. and Kjartanson B.H., 2002. Mechanical properties
of shredded tires. {\it Geotechnical Testing Journal, 25(1)}, pp.
44-52.
https://doi.org/10.1520/GTJ11078J.
\شماره٪٪۱۴
Youwai, S. and Bergado, D.T., 2003. Strenght and deformation characteristics
of shredded rubber tire-sand mixtures. {\it Journal of Canadian
Geotechnical, 40(2)}, pp.254-264.
https://doi.org/10.1139/t02-104.
\شماره٪٪۱۵
Zornberg, J.G. and Cabral, A.R.,
2004. Behaviour of tire shred-sand mixtures.
{\it Journal of Canadian Geotechnical, 41(2)}, pp.227-241.
https://doi.org/10.1139/t03-086.
\شماره٪٪۱۶
Gotteland, P., Lambert, S. and Balachowski, L.,
2005. Strenght characteristics
of tyre chips-sand mixture. {\it Studia Geotechnica et Mechanica,
27(1)}).
https://hal.science/hal-01987906.
\شماره٪٪۱۷
Venkatappa, Rao, G., and Dutta, R.k., 2006. Compressibility and strength
behaviour of sand-tire chip mixtures. {\it Journal of Geotechnical
and Geological Engineering, 24(3)}, pp.711-724.
https://doi.org/10.1007/s10706-004-4006-x.
\شماره٪٪۱۸
Attom, M.F., 2006. The use of shredded waste tires to improve the
geotechnical engineering properties of sand. {\it Journal of Envionmental
Geology, 49(4)}, pp.497-503.
https://doi.org/10.1007/s00254-005-0003-5.
\شماره٪٪۱۹
Noorzad, R. and Raveshi, M., 2017. Mechanical behavior of waste tire
crumbs-sand mixtures determined by triaxial tests. {\it Journal
of Geotech Geol Eng, 35}, pp. 1793-1802.
https://doi.org/10.1007/s10706-017-0209-9.
\شماره٪٪۲۰
Ahmed, S., Vinod, J.S. and Neaz sheikh, M., 2007. Behavior of sand-tire
chip mixtures in constant shear drained stress path. {\it journal
materials in civil engineering, 34(11)}.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0004458.
\شماره٪٪۲۱
Okamoto, S., Hyodo, M., Orense, P. and Hazarika, H., 2007. Undrained
cyclic shear properties of tire chips-sand mixtures. {\it Proceedings
of the International Workshop on Scrap Tire Derived Geomaterials-Opportunities
and Challenges}, Taylor \& Francis Group, London, UK, pp.187-196
(2007).
\شماره٪٪۲۲
Promputthangkoon, P. and Hyde, A.F.L., 2007. Compressibility and
liquefaction potential of rubber composite soils. {\it Proceedings
of the International Workshop on Scrap Tire Derived Geomaterials-Opportunities
and Challenges. Taylor} \& {\it Francis Group, London, UK}, pp.161-170
(2007).
\شماره٪٪۲۳
Zhou, E., and Wang, Q., 2019. Experimental investigation on shear
strength and liquefaction potential of rubber-sand mixtures.
Advances in Civil Engineering, Article ID 5934961 (2019).
https://doi.org/10.1155/2019/5934961.
\شماره٪٪۲۴
Shariatmadari, N., Karimpour-Fard, M. and Shargh, A., 2018. Undrained
monotonic and cyclic behavior of sand-ground rubber mixtures.
{\it Earthquake Engineering and Engineering Vibration, 17(3)}, pp.541-553.
https://doi.org/10.1007/s11803-018-0461-x.
\شماره٪٪۲۵
Amanta, S.A. and Dasaka, S.M., 2022. Dynamic characteristics and liquefaction
behavior of sand-tire chip mixes. {\it Journal Materials in Civil
Engineering, 34(10)}.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0004423.
\شماره٪٪۲۶
Nikitas, G. and Bhattacharya, S., 2023. Experimental study on sand-tire
chip mixture foundations acting as a soil liquefaction countermeasure.
Bull Earthquake Eng.
https://doi.org/10.1007/s10518-023-01667-1.
\شماره٪٪۲۷
Kawata, S., Hyodo, M., Orense, P., Yamada, S. and Hazarika,
H., 2007. Undrained and drained shear behavior of sand and tire chips
composite material. {\it Proceedings of the International Workshop
on Scrap Tire Derived Geomaterials-Opportunities and Challenges},
Yokosuka, Japan.
\شماره٪٪۲۸
Mashiri., M.S., 2014. Monotonic and cyclic behaviour of sand tyre
chips (STCh) mixtures, Dissertation. University of Wollongong,
Wollongong, Australia.
\شماره٪٪۲۹
Senthen Amuthan, M., Boominathan, A., Banerjee, S., 2020. Undrained
cyclic responses of granulated rubber-sand mixtures. {\it Soils
and Foundations, 60}, pp.871-885.
https://doi.org/10.1016/j.sandf.2020.06.007.
\شماره٪٪۳۰
Li, B., Huang, M. and Zeng, X., 2016. Dynamic behavior and liquefaction
analysis of recycled-rubber sand mixtures. {\it Journal of Materials
in Civil Engineering, 28(11)}, 04016122.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001629.
\شماره٪٪۳۱
Hong, Y., Yang, Z., Orense, R.P., and Lu, Y. 2015. Investigation
of sand-tire mixtures as liquefaction remedial measure. {\it Proceedings
of the 10th Pacific Conference on Earthquake Engineering}, Sydney,
Australia.
\شماره٪٪۳۲
ASTM D422., 2004. Standard Test Method for Particle-Size Analysis
of Soils, Annual Book of ASTM Standards, Conshohocken, P.A.
(2004).
\شماره٪٪۳۳
ASTM D4254., 2004. Standard Test Methods for Maximum Index Density
and Unit Weight of Soils Using a Vibratory Table. Annual Book
of ASTM Standards, West Conshohocken, PA.
\شماره٪٪۳۴
ASTM D4253., 2004. Standard Test Methods for Minimum Index Density
and Unit Weight of Soils and Calculation of Relative Density.
Annual Book of ASTM Standards, West Conshohocken, PA.
\شماره٪٪۳۵
ASTM D7181., 2011. Standard Test Method for Consolidated Drained Triaxial
Compression Test for Soils. Annual Book of ASTM Standards,
West Conshohocken, PA (2011).
\شماره٪٪۳۶
ASTM D5311., 2004. Standard Test Method for Load Controlled Cyclic
Triaxial Strength of Soil. Annual Book of ASTM Standards, West
Conshohocken, PA.
\شماره٪٪۳۷
Sheikh, M., Mashiri, M., Vinod, J.S. and Tsang, H.H., 2013. Shear and
compressibility behaviours of sand-tyre crumb mixtures. {\it Journal
Materials in Civil Engineering, 25(10)}, pp.1366-1374.
https://doi.org/10.1016/j.sandf.2015.04.004.
\شماره٪٪۳۸
Madhusudhan, B.R., Boominathan, A. and Banerjee, S., 2017. Static and
large-strain dynamic properties of sand-rubber tire shred mixtures.
{\it Mater Civ Eng, 29(10)}, pp.04017165.
https://doi.org/10.1061/ (ASCE)MT.1943-5533.0002016.
\شماره٪٪۳۹
Rouhanifar, S., Afrazi, M., Fakhimi, A., Yazdani, M., 2012. Strength
and deformation behaviour of sand-rubber mixture. {\it Int. J. Ge-
otech. Eng, 15}, pp.1078-1092.
https://doi.org/10.1080/19386362.2020.1812193.
\شماره٪٪۴۰
Reddy, B., Kumar, P., Krishna, M., 2016. Evaluation of the optimum
mixing ratio of a sand-tire chips mixture for engineering
applications. {\it Journal Materials in Civil Engineering,
28}, 06015007.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001335.
\شماره٪٪۴۱
Lee, J.S., Dodds, J. and Santamarina, J.C., 2007. Behavior of rigid-soft
particle mixtures. {\it Journal Materials in Civil Engineering.
19(2)}, pp.179-184.
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179).
\شماره٪٪۴۲
Ghazavi, M. and Kavandi, M., 2022. Shear modulus and damping characteristics
of uniform and layered sand-rubber grain mixtures. {\it Soil Dynamics
and Earthquake Engineering, 162}, 107412.
https://doi.org/10.1016/j.soildyn.2022.107412.
\شماره٪٪۴۳
Ding, Y., Zhang, J., Chen, X., Wang, X. and Jia, Y., 2012. Experimental
investigation on static and dynamic characteristics of granulated
rubber-sand mixtures as a new railway subgrade filler. {\it bConstruction
and Building Materials, 273}, 121955.
https://doi.org/10.1016/j.conbuildmat.2020.121955.