1. Negm, A.M., Alhamid, A.A. and El-Saiad, A.A., 1998. Submerged flow below sluice gate with a sill. Proceedings of International Conference on Hydro-Science and Engineering Hydro-Science and Engineering ICHE98, Advan ces in Hydro-Science and Engineering, Cottbus/Berlin, G.
2. Daneshfaraz, R. Norouzi, R. Abbaszadeh, H. and Azamathulla, H.M., 2022. Theoretical and experimental analysis of applicability of sill with different widths on the gate discharge coefficients. Water Supply, 22 (10), pp.7767–7781. DOI: https://doi.org/10.2166/ws.2022.354
3. Alhamid, A.A., 1999. Coefficient of discharge for free flow sluice gates. Journal of King Saud University - Engineering Sciences, 11 (1), pp.33-47. DOI: https://doi.org/10.1016/S1018-3639(18)30989-9
4. Salmasi, F. and Norouzi Sarkarabad, R., 2018. Investigation of different geometric shapes of sills on discharge coefficient of vertical sluice gate. Amirkabir Journal of Civil Engineering, 52 (1), 2-2 Doi: 10.22060/ceej.2018.14232.5596. DOI: https://doi.org/10.22060/ceej.2018.14232.5596
5. Karami, S. Heidari, M.M. and Adib Rad, M.H., 2020. Investigation of free flow under the sluice gate with the sill using flow-3D model. Iran J Sci Technol Trans Civ Eng, 44, pp.317–324. DOI: https://doi.org/10.1007/s40996-019-00310-x
6. Salmasi, F. and Abraham, J., 2020. Prediction of discharge coefficients for sluice gates equipped with different geometric sills under the gate using multiple non-linear regression (MNLR). Journal of Hydrology, 597, 125728. DOI: https://doi.org/10.1016/j.jhydrol.2020.125728
7. Ghorbani, M.A. Salmasi, F. Saggi, M.K. Bhatia, A.S. Kahya, E. and Norouzi, R., 2020. Deep learning under H2O framework: A novel approach for quantitative analysis of discharge coefficient in sluice gates. Journal of Hydroinformatics, 22 (6), pp.1603-1619. DOI: https://doi.org/10.2166/hydro.2020.003
8. Daneshfaraz, R. Norouzi, R. Abbaszadeh, H. Kuriqi, A. and Di Francesco, S., Influence of sill on the hydraulic regime in sluice gates: An experimental and numerical analysis. Fluids, 7 (7), 244. DOI: https://doi.org/10.3390/fluids7070244
9. Lauria, A. Calomino, F. Alfonsi, G. and D’Ippolito, A., 2020. Discharge Coefficients for Sluice Gates Set in Weirs at Different Upstream Wall Inclinations. Water, 12 (1), 245. DOI: https://doi.org/10.3390/w12010245
10. Raju, R., 1984. Scale Effects in Analysis of Discharge Characteristics of Weir and Sluice Gates; Kobus: Esslingen am Neckar, Germany.
11. Vapnik. VN., 1995. The Nature of Statistical Learning Theory, Springer-Verlag, New York.
12. Jahed Armaghani, D. Asteris, P.G. Askarian, B. Hasanipanah, M. Tarinejad, R. and Huynh, V.V., 2020. Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability, 12 (6), 2229. DOI: https://doi.org/10.3390/su12062229
13. Su, M.Y., 2011. Real-Time anomaly detection systems for denial-of-service attacks by weighted K-nearest neighbor classifiers. Expert Systems with Applications, 38, pp.3492–3498. DOI: https://doi.org/10.1016/j.eswa.2010.08.137
14. Al-Bulushi, N.I. King, P.R. Blunt, M.J. and Kraaijveld, M., 2010. Artificial neural networks workflow and its application in the petroleum industry. Neural Comput. Appl, 21, pp.409–421. DOI: https://doi.org/10.1007/s00521-010-0501-6
15. Mohammed, A.Y. and Sharifi, A., 2020. Gene Expression Programming (GEP) to predict coefficient of discharge for oblique side weir. Appl Water Sci, 10, 145. DOI: https://doi.org/10.1007/s13201-020-01211-5
16. Gupta, H.V. Kling, H. Yilmaz, K.K. and Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol, 377 (1-2), pp.80–91. DOI: https://doi.org/10.1016/j.jhydrol.2009.08.003