1. EWEA, 2019. The European offshore wind industry. Key Trends and Statistics.
2. Wind Europe, 2021. Wind Energy in Europe: Statistics and the Outlook for 2022-2026.
3. Hansen, J. B., 1961. The ultimate resistance of rigid piles against transversal forces. Bulletin, Danish Geotechnical Institute, 12, 1-9.
4. Byrne, B. W., Burd, H. J., Zdravkovic, L., Abadie, C. N., Houlsby, G. T., Jardine, R. J., ... and Taborda, D. M., 2019. PISA design methods for offshore wind turbine monopiles. Offshore Technology Conference. OTC. doi.org/10.4043/29373-MS.
5. Padrón, L. A., Carbonari, S., Dezi, F., Morici, M., Bordón, J. D. and Leoni, G., 2022. Seismic response of large offshore wind turbines on monopile foundations including dynamic soil–structure interaction. Ocean Engineering, 257, 111653. doi.org/10.1016/j.oceaneng.2022.111653.
6. Mu, L., Kang, X., Feng, K., Huang, M. and Cao, J., 2018. Influence of vertical loads on lateral behaviour of monopiles in sand. European Journal of Environmental and Civil Engineering, 22(sup1), pp.286-301. doi.org/10.1080/19648189.2017.1359112.
7. Yu, H., Zeng, X., Li, B. and Lian, J., 2015. Centrifuge modeling of offshore wind foundations under earthquake loading. Soil Dynamics and Earthquake Engineering, 77, pp. 402-415. doi.org/10.1016/j.soildyn.2015.06.014.
8. Seong, J. T., Ha, J. G., Kim, J. H., Park, H. J. and Kim, D. S., 2017. Centrifuge modeling to evaluate natural frequency and seismic behavior of offshore wind turbine considering SFSI. Wind Energy, 20(10), pp.1787-1800. doi.org/10.1002/we.2127.
9. Seong, J. T. and Kim, D. S., 2019. Seismic evaluation of offshore wind turbine by geotechnical centrifuge test. Wind Energy, 22(8), pp.1034-1042. doi.org/10.1002/we.2338.
10. LeBlanc, C., Houlsby, G. T. and Byrne, B. W., 2010. Response of stiff piles in sand to long-term cyclic lateral loading. Géotechnique, 60(2), pp.79-90. doi.org/10.1680/geot.7.00196.
11. Long, J. H. and Vanneste, G., 1994. Effects of cyclic lateral loads on piles in sand. Journal of Geotechnical Engineering, 120(1), pp.225-244. doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225).
12. Achmus, M., Kuo, Y. S. and Abdel-Rahman, K., 2009. Behavior of monopile foundations under cyclic lateral load. Computers and Geotechnics, 36(5), pp.725-735. doi.org/10.1016/j.compgeo.2008.12.003.
13. Wang, X., Zeng, X., Yang, X. and Li, J., 2019. Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling. Applied Energy, 235, pp.1335-1350. doi.org/10.1016/j.apenergy.2018.11.057.
14. Wang, X., Zeng, X., Li, X. and Li, J., 2020. Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling. Renewable Energy, 145, pp.2358-2372. doi.org/10.1016/j.renene.2019.07.106.
15. Lau, B. H., 2015. Cyclic behaviour of monopile foundations for offshore wind turbines in clay. Doctoral dissertation, University of Cambridge. doi.org/10.17863/CAM.14093.
16. Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N. A., Cox, J., Lombardi, D., ... and Nash, D. F., 2013. Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 54, pp.47-60. doi.org/10.1016/j.soildyn.2013.07.012.
17. Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M. and Wilson, D., 2010. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), pp.151-164. doi.org/10.1061/(ASCE)GT.1943-5606.0000179.
18. van der Tempel, J. and Molenaar, D. P., 2002. Wind turbine structural dynamics–a review of the principles for modern power generation, onshore and offshore. Wind Engineering, 26(4), pp.211-222. doi.org/10.1260/030952402321039412.
19. Iai, S., Tobita, T. and Nakahara, T., 2005. Generalised scaling relations for dynamic centrifuge tests. Geotechnique, 55(5), pp.355-362. doi.org/10.1680/geot.2005.55.5.355.
20. Liu, J., Yuan, B. and Dimaano, R., 2011. Optical measurement of sand deformation around a laterally loaded pile. Journal of Testing and Evaluation, 39(5), pp.754-759. doi.org/10.1520/JTE103313.
21. DNV, G., 2014. Design of offshore wind turbine structures. Offshore Standard DNV-OS-J101. DNV GL AS, Høvik (Norway).