1. Huang, C., Wong, C. K. and Tam, C. M., 2010. Optimization of material hoisting operations and storage locations in multi-story building construction by mixed-integer programming. J. of Autom. Constr. 19, pp.656–663. doi: 10.1016/j.autcon.2010.02.005.
2. Bamunuarachchi, D. T. and Ranasinghe, D. N., 2015. Elevator group optimization in a smart building. In 2015 IEEE 10th Int. Conf. Ind. Inf. Syst. ICIIS 2015 - Conf. Proc., 71–76. doi:10.1109/ICIINFS.2015.7398988.
3. Jung, M., Park, M., Lee, H.-S. and Chi, S., 2017. Agent-based lift system simulation model for high-rise building construction projects. J. of Comput. Civ. Eng., 31, 1–10. doi: 10.1061/(asce)cp.1943-5487.0000707.
4. Kamleh, M., 2014. Improving hoist performance during the up-peak of tall building construction.
5. Lin, X., Han, Y., Guo, H., Luo, Z. and Guo, Z., 2023. Lift path planning for tower cranes based on environmental point clouds. J. of Autom. Constr. 155, 105046. doi: 10.1016/j.autcon.2023.105046.
6. Al-Hussein, M., Athar Niaz, M., Yu, H. and Kim, H., 2006. Integrating 3D visualization and simulation for tower crane operations on construction sites. J. of Autom. Constr. 15, pp. 554-563. doi: 10.1016/j.autcon.2005.07.007.
7. Safouhi, H., Mouattamid, M., Hermann, U. and Hendi, A., 2011. An algorithm for the calculation of feasible mobile crane position areas. J. of Autom. Constr. 20, pp. 360–367. doi: 10.1016/j.autcon.2010.11.006.
8. Han, S. H., Hasan, S., Bouferguène, A., Al-Hussein, M. and Kosa, J., 2015. Utilization of 3D visualization of mobile crane operations for modular construction on-site assembly. J. of Manag. Eng. 31, pp. 1–9. doi: 10.1061/(asce)me.1943-5479.0000317.
9. Zhang, Z. and Pan, W., 2021. Multi-criteria decision analysis for tower crane layout planning in high-rise modular integrated construction. J. of Autom. Constr. 127, 103709. doi: 10.1016/j.autcon.2021.103709.
10. Ji, Y. and Leite, F., 2020. Optimized planning approach for multiple tower cranes and material supply points using mixed-integer programming. J. of Constr. Eng. Manag. 146, doi: 10.1061/(asce)co.1943-7862.0001781.
11. Zhang, P., Harris, F. C. and Olomolaiye, P. O., 1996. A computer-based model for optimizing the location of a single tower crane: Authors claim 20-40% of hook horizontal traveling time can be saved if located at the position recommended by the model. J. of Build. Res. Inf. 24, pp. 101-109. doi: 10.1080/09613219608727511.
12. Tam, C. M., Tong, T. K. L. and Chan, W. K. W., 2001. Genetic algorithm for optimizing supply locations around tower crane. J. of Constr. Eng. Manag. 127, pp. 315-322. doi: 10.1061/(asce)0733-9364(2001)127:4(315).
13. Huang, C., Wong, C. K. and Tam, C. M., 2011. Optimization of tower crane and material supply locations in a high-rise building site by mixed-integer linear programming. J. of Autom. Constr. 20, pp. 571–580. doi: 10.1016/j.autcon.2010.11.023.
14. Lien, L. C. and Cheng, M. Y., 2014. Particle bee algorithm for tower crane layout with material quantity supply and demand optimization. J. of Autom. Constr. 45, pp. 25–32. doi: 10.1016/j.autcon.2014.05.002.
15. Riga, K., Jahr, K., Thielen, C. and Borrmann, A., 2020. Mixed integer programming for dynamic tower crane and storage area optimization on construction sites. J. of Autom. Constr. 120, 103259. doi: 10.1016/j.autcon.2020.103259.
16. Dienstknecht, M., 2023. A branch and bound approach for the tower crane selection and positioning problem with respect to mutual interference. 4or 21, pp. 105–123. doi: 10.1007/s10288-022-00503-7.
17. Zavichi, A. and Behzadan, A. H., 2011. A real-time decision support system for enhanced crane operations in construction and manufacturing. In Congress on Computing in Civil Engineering, Proceedings. doi: 10.1061/41182(416)72.
18. Zavichi, A., Madani, K., Xanthopoulos, P. and Oloufa, A. A., 2014. Enhanced crane operations in construction using service request optimization. J. of Autom. Constr. 45, pp. 25–32. doi: 10.1016/j.autcon.2014.07.011.
19. Monghasemi, S., Nikoo, M. R. and Adamowski, J., 2016. Sequential ordering of crane service requests considering the pending times of the requests: an approach based on game theory and optimization techniques. J. of Autom. Constr. 45, pp. 25–32. doi: 10.1016/j.autcon.2016.06.006.
20. Al Hattab, M., Zankoul, E. and Hamzeh, F. R., 2017. Near-real-time optimization of overlapping tower crane operations: a model and case study. J. of Comput. Civ. Eng. 31, pp. 1–9. doi: 10.1061/(asce)cp.1943-5487.0000666.
21. Al Hattab, M., Zankoul, E., Barakat, M. and Hamzeh, F., 2018. Crane overlap and operational flexibility: balancing utilization, duration, and safety. J. of Constr. Innov. 18, pp. 1-15. doi: 10.1108/CI-11-2016-0062.
22. Tarhini, H., Maddah, B. and Hamzeh, F., 2021. The traveling salesman puts-on a hard hat – tower crane scheduling in construction projects. J. of Eur. J. Oper. Res. 291, pp. 1-12. doi: 10.1016/j.ejor.2020.10.029.
23. Tam, C. M. and Tong, T. K. L., 2003. GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction. J. of Constr. Manag. Econ. 21, pp. 257–266. doi: 10.1080/0144619032000049665.
24. Moussavi Nadoushani, Z. S., Hammad, A. W. A. and Akbarnezhad, A., 2017. Location optimization of tower crane and allocation of material supply points in a construction site considering operating and rental costs. J. of Constr. Eng. Manag. 143, pp. 1–13. doi: 10.1061/(asce)co.1943-7862.0001215.
25. Huang, C. and Wong, C. K., 2018. Optimization of crane setup location and servicing schedule for urgent material requests with non-homogeneous and non-fixed material supply. J. of Autom. Constr. 89, pp. 183–198. doi: 10.1016/j.autcon.2018.01.015.
26. Zhang, P., Harris, F. C., Olomolaiye, P. O. and Holt, G. D., 1999. Location optimization for a group of tower cranes. J. of Constr. Eng. Manag. 125, pp. 115-123. doi: 10.1061/(asce)0733-9364(1999)125:2(115).
27. Wang, J. et al., 2015. A BIM-based approach for automated tower crane layout planning. J. of Autom. Constr. 59, pp. 168–178. doi: 10.1016/j.autcon.2015.05.006.
28. Tork, A., 2013. A real-time crane service scheduling decision support system (CSS-DSS) for construction tower crane. (Ph.D. thesis, College of engineering and computer science, university of central florida).
29. Yeo, K. T. and Ning, J. H., 2006. Managing uncertainty in major equipment procurement in engineering projects. J. of Eur. J. Oper. Res. 171, pp. 123-134. doi: 10.1016/j.ejor.2004.06.036.
30. Yeoh, J. K. W. and Chua, D. K. H., 2017. Optimizing crane selection and location for multistage construction using a four-dimensional set cover approach. J. of Constr. Eng. Manag. 143, pp. 1-12. doi: 10.1061/(asce)co.1943-7862.0001318.
31. Marzouk, M. and Abubakr, A., 2016. Decision support for tower crane selection with building information models and genetic algorithms. J. of Autom. Constr. 61, pp. 1–15. doi: 10.1016/j.autcon.2015.09.008.
32. Wu, K., García de Soto, B. and Zhang, F., 2020. Spatio-temporal panning for tower cranes in construction projects with simulated annealing. J. of Autom. Constr. 111, 103060. doi: 10.1016/j.autcon.2019.103060.
33. Sugimoto, Y., Seki, H., Samo, T. and Nakamitsu, N., 2016. 4D CAD-based evaluation system for crane deployment plans in construction of nuclear power plants. J. of Autom. Constr. 68, pp. 1-10. doi: 10.1016/j.autcon.2016.04.004.
34. Chang, Y. C., Hung, W. H. and Kang, S. C., 2012. A fast path planning method for single and dual crane erections. J. of Autom. Constr. 22, pp. 1-12. doi: 10.1016/j.autcon.2011.11.006
35. Kang, S. C. and Miranda, E., 2006. Planning and visualization for automated robotic crane erection processes in construction. J. of Autom. Constr. 15, pp. 398-408. doi: 10.1016/j.autcon.2005.06.008.
36. Ali, G. M. et al., 2021. Decision support for hydraulic crane stabilization using combined loading and crane mat strength analysis. J. of Autom. Constr. 125, 103884. doi: 10.1016/j.autcon.2021.103884.
37. Gharaie, E., Lingard, H. and Cooke, T., 2015. Causes of fatal accidents Involving Cranes in the Australian construction industry. J. of Constr. Econ. Build. 15, pp. 1-12. doi: 10.5130/AJCEB.v15i2.4244.
38. Shin, Y., Cho, H. and Kang, K. I., 2011. Simulation model incorporating genetic algorithms for optimal temporary hoist planning in high-rise building construction. J. of Autom. Constr. 20, pp. 550–558. doi: 10.1016/j.autcon.2010.11.021.
39. Jung, M. et al., 2017. Construction worker hoisting simulation for sky-lobby lifting system. J. of Autom. Constr. 73, pp. 166–174. doi: 10.1016/j.autcon.2016.10.002.
40. Jalali Yazdi, A., Forsythe, P., Ahmadian Fard Fini, A. and Maghrebi, M., 2019. Optimization of flexible lift processes on high-rise building construction sites. J. of Autom. Constr. 107, 102939. doi: 10.1016/j.autcon.2019.102939.
41. Jalali Yazdi, A., Maghrebi, M. and Bolouri Bazaz, J., 2018. Mathematical model to optimally solve the lift planning problem in high-rise construction projects. J. of Autom. Constr. 92, pp. 120–132. doi: 10.1016/j.autcon.2018.03.029.
42. Beamurgia, M., Basagoiti, R., Rodríguez, I. and Rodriguez, V., 2016. A modified genetic algorithm applied to the elevator dispatching problem. J. of Soft Comput. 20, pp. 3595–3609. doi: 10.1007/s00500-015-1718-1.
43. Ruokokoski, M., Ehtamo, H. and Pardalos, P. M., 2015. Elevator Dispatching Problem: A mixed integer linear programming formulation and polyhedral results. J. of Comb. Optim. 29, pp. 750–780. doi: 10.1007/s10878-013-9620-1.
44. Tai, J., Yang, S. and Tan, H., 2008. Dispatching approach optimization of elevator group control system with destination floor guidance using fuzzy neural network. Proc. In World Congr. Intell. Control Autom. 7, pp. 7085–7088. doi: 10.1109/WCICA.2008.4594016.
45. Utgoff, P. E. and Connell, M. E., 2012. Real-time combinatorial optimization for elevator group dispatching. J. of IEEE Trans. Syst. Man, Cybern. Part A Syst. Humans 42, pp. 130–146. doi: 10.1109/TSMCA.2011.2157134.
46. Tang, H. Y., Bao, D., Qi, W. G. and Zhang, Y. M., 2008. Optimization of elevator group control scheduling with multi-strategy switch. In Proc. 7th Int. Conf. Mach. Learn. Cybern. ICMLC 4, pp. 2067–2072. doi: 10.1109/ICMLC.2008.4620746.