1. Whittaker, A., Bertero, . V. V., Thompson, C. L. & Alonso, L. J., 1991. Seismic Testing of Steel Plate Energy Dissipation Devices.
Earthquake Spectra,
7(4), pp. 563-604.
https://doi.org/ 10.1193/1.1585644
3. Li, Z., Shu, G. & Huan, . Z., 2019. Development and cyclic testing of an innovative shear-bending combined metallic damper.
Journal of Constructional Steel Research,
158, pp. 28-40.
DOI: 10.1016/j.jcsr.2019.03.008
40 Houshmand-Sarvestani, A., Totonchi, A., Shahmohammadi, M. A. & Salehipour, H., 2023. Numerical assessment of the effects of ADAS yielding metallic dampers on the structural behavior of steel shear walls (SSWs).
Mechanics Based Design of Structures and Machines,
51(3), pp. 1626-1644.
https://doi.org/10.1080/15397734.2021.1875328
5. Youssef, A. A., Esfahani, M. R. & Zareian, M. S., 2023. Experimental evaluation of post-tensioned hybrid coupled shear wall system with TADAS steel dampers at the beam-wall interface.
Structures,
53, pp. 1283-1299.
http://doi.org/10.1016/j.istruc.2023.04.122
7. Tsai, K.-C., Chen, H.-W., Hong, C.-P. & Su, Y.-F., 1993. Design of steel triangular plate energy absorbers for seismic-resistant construction.
Earthquake Spectra,
9(3), pp. 505-528.
https://doi.org/10.1193/1.1585727
8. Garivani, S., Aghakouchak, A. & Shahbeyk, S., 2016. Numerical and experimental study of comb-teeth metallic yielding dampers.
International Journal of Steel Structures,
16, pp. 177-196.
https://doi.org/10.1007/s13296-016-3014-z
11. Jarrah, M., Khezrzadeh, H., Mofid, M. & Jafar, . K., 2019. Experimental and numerical evaluation of piston metallic damper (PMD).
Journal of Constructional Steel Research,
154, pp. 99-109. DOI:
http://doi.org/10.1016/j.jcsr.2018.11.024
12. Heyrani Moghaddam, S. & Shooshtari, A., 2023. Numerical and experimental investigation on seismic performance of proposed steel slit dampers.
Journal of Constructional Steel Research, 200, pp. 107646,.
https://doi.org/ 10.1016/j.jcsr.2022.107646
14. Hedayat, A. A., 2015. Prediction of the force displacement capacity boundary of an unbuckled steel slit damper.
Journal of Constructional Steel Research,
114, pp. 30-50.
https://doi.org/10.1016/j.jcsr.2015.07.003
15. Aminzadeh, M., Kazemi, H. S. & Tavakkoli, S. M., 2020. A numerical study on optimum shape of steel slit dampers. Advances in Structural Engineering, 23, pp. 2967-2981.DOI:1177/1369433220927281
17. Ghaedi, K., Ibrahim, Z., Javanmardi, A. & Rupakhety, R., 2021. Experimental Study of a New Bar Damper Device for Vibration Control of Structures Subjected to Earthquake Loads.
Journal of Earthquake Engineering,
25(2), pp. 300-318
.https://doi.org/10.1080/13632469.2018.1515796
18. Zlatkov, D. et al., 2022. Experimental and Numerical Study of Energy Dissipation Components of a New Metallic Damper Device.
Journal of Vibration Engineering and Technologies,
10, pp. 1809-1829.
https://doi.org/10.1007/s42417-022-00485-0
19. Vasdravellis, G., Karavasilis, TL. and Uy, B., 2013. Large-scale experimental validation of steel post-tensioned connections with web hourglass pins.
Journal of Structural Engineering,
139(6), pp.1033–1042.
https://doi.org/10.1061/(ASCE)ST.1943-541X.000069
20. Garmeh, V., Akbarpour, A., Adibramezani, M., Kashani, A. and Adibi, M., 2021. Introducing and numerical study of an innovative rotational damper with replaceable hourglass steel pins.
Structures.
33, pp.2019-2035.
https://doi.org/10.1016/j.istruc.2021.05.072
21.Applied Technology Council, Mid-America Earthquake Center, Multidisciplinary Center for Earthquake Engineering Research (US), Pacific Earthquake Engineering Research Center and National Earthquake Hazards Reduction Program (US), 2007. Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Federal Emergency Management Agency.