1. Panji, M., Kamalian, M., Asgari Marnani, J. and Jafari, M.K., 2013. Transient analysis of wave propagation problems by half-plane BEM. Geophys J Int, 194(3), 1849-1865. https://doi.org/10.1093/gji/ggt200
2. Panji, M., Kamalian, M., Asgari Marnani, J. and Jafari, M.K., 2014. Analysing seismic convex topographies by a half-plane time-domain BEM. Geophys J Int, 197(1), 591-607. https://doi.org/10.1093/gji/ggu012
3. Panji, M., Mojtabazadeh-Hasanlouei, S. and Yasemi, F., 2020. A half-plane time-domain BEM for SH-wave scattering by a subsurface inclusion. Comp. Geosci., 134,104342. https://doi.org/10.1016/j.cageo.2019.104342.
4. Panji, M. and Mojtabazadeh-Hasanlouei, S., 2018. Time-history responses on the surface by regularly distributed enormous embedded cavities: Incident SH-waves. Earthq Sci, 31, 1-17. http://dx.doi.org/10.29382/eqs-2018-0137-3
5. Panji, M. and Mojtabazadeh-Hasanlouei, S., 2020. Transient response of irregular surface by periodically distributed semi-sine shaped valleys: Incident SH-waves. J Earthq Tsu, 14(1), 2050005. https://doi.org/10.1142/S1793431120500050
6. Li, Y.G., 1988. Seismic wave propagation in anisotropic media with applications to denning fractures in the Earth [Ph.D. dissertation]. University of Southern California.
7. Babuska, V. and Cara, M. 1991. Seismic anisotropy in the Earth. Kluwer Academic Pub., Dordrecht, MA, 1991. https://doi.org/10.1007/978-94-011-3600-6
8. Aki, K., 1993. Local site effects on weak and strong ground motion. Tectonophys, 218(1-3), 93-111. https://doi.org/10.1016/0040-1951(93)90262-I
9. Ke, J., 2012. A new model of orthotropic bodies. Appl Mech Mater, 204, 4418-4421. https://doi.org/10.4028/www.scientific.net/AMM.204-208.4418
10. Vinh, P.C., Anh, V.T.N. and Linh, N.T.K., 2016. Exact secular equations of Rayleigh waves in an orthotropic elastic half-space overlaid by an orthotropic elastic layer. Int J Sol Struct, 83, 65-72. https://doi.org/10.1016/j.ijsolstr.2015.12.032
11. Gupta, S., Smita, S. and Pramanik, S., 2017. Refelction and refraction of SH-waves in an orthotropic layer sandwiched between two distinct dry sandy half-space. Procedia Eng, 173, 1146-1153. https://doi.org/10.1016/j.proeng.2016.12.084
12. Rajak, B.P. and Kundu, S., 2019. Love wave propagation in a sandy layer under initial stress lying over a pre-stressed heterogeneous orthotropic half-space. AIP Conference Proceedings, 2061(1), 020015. https://doi.org/10.1063/1.5086637
13. Aki, K. and Larner, K.L., 1970. Surface motion of a layered medium having an irregular interface due to incident plane SH-waves, J Geophys Res, 75(5), 933- 954. https://doi.org/10.1029/JB075i005p00933
14. Varadan, V.K., Varadan, V.V. and Pao Y.H., 1978. Multiple scattering of elastic waves by cylinders of arbitrary cross section, I, SH-waves, J Acoust Soc Am, 63(5), 1310-1319. https://doi.org/10.1121/1.381883
15. Campillo, M. and Bouchon, M., 1985. Synthetic SH-seismograms in a laterally varying medium by the discrete wavenumber method. Geophys J Int, 83, 307-317. https://doi.org/10.1111/j.1365-246X.1985.tb05168.x
16. Chen, J., Liu, Z.X. and Zou, Z.Z., 2002. Transient internal crack problem for a nonhomogeneous orthotropic strip (mode I). Int J Eng Sci, 40, 1761-1774. https://doi.org/10.1016/S0020-7225(02)00038-1
17. Rangelov, T.V., Manolis, G.D. and Dineva, P.S., 2010. Wave propagation in a restricted class of orthotropic inhomogeneous half-planes. Acta Mechanica, 210, 169-182. https://doi.org/10.1007/s00707-009-0199-7
18. Bagault, C., Nélias, D. and Baietto, M., 2012. Contact analyses for anisotropic half space: effect of the anisotropy on the pressure distribution and contact area. Int J Sol Struct, 134(3), 031401-031409. https://doi.org/10.1016/j.ijsolstr.2012.11.002
19. Sanchez-Sesma, F.J., Palencia, V.J. and Luzon, F., 2002. Estimation of local site effects during earthquakes: An overview. ISET J Earthq Technol, 39(3), 167-193.
20. Eidel, B. and Gruttmann, F., 2003. Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation. Comput Mater Sci, 28, 732-742. https://doi.org/10.1016/j.commatsci.2003.08.027
21. Sladek, J., Sladek, V., Zhang, C., Krivacek, J. and Wen, P., 2006. Analysis of orthotropic thick plates by meshless local Petrov-Galerkin (MLPG) method. Int J Numer Methods Eng, 67, 1830-1850. https://doi.org/10.1002/nme.1683
22. Petrolito, J., 2014. Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements. Appl Math Model, 38, 5858-5869. https://doi.org/10.1016/j.apm.2014.04.026
23. Nguyen, M., Nha, N., Bui, T.Q. and Tich, T.T., 2017. A novel numerical approach for fracture analysis in orthotropic media. Sci Tech Dev J, 20, 5-13.
24. Guler, M.A., Kucuksucu, A., Yilmaz, K. and Yildirim, B., 2017. On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium. Int J Mech Sci, 120(C), 12-29. https://doi.org/10.1016/j.ijmecsci.2016.11.004
25. Gupta, S., Smita, S. and Pramanik, S., 2017. SH-wave in a multilayered orthotropic crust under initial stress: A finite difference approach. Cogent Math, 4(1), https://doi.org/10.1080/23311835.2017.1284294
26. Comez, I., Yilmaz, K., Guler, M. and Yildirim, B., 2019. On the plane frictional contact problem of a homogeneous orthotropic layer loaded by a rigid cylindrical stamp. Arch Appl Mech, 89, 1403-1419. https://doi.org/10.1007/s00419-019-01511-6
27. Lee, J.K., Han Y.B. and Ahn, Y.J., 2015. SH-wave scattering problems for multiple orthotropic elliptical inclusions. Adv Mech Eng, 5, 1-14. https://doi.org/10.1155/2013/370893
28. Lee, J.K., Lee, H. and Jeong, H., 2016. Numerical analysis of SH-wave field calculations for various types of a multilayered anisotropic inclusion. Eng Analy BE, 64, 38-67. https://doi.org/10.1016/j.enganabound.2015.11.015
29. Dominguez, J., 1993. Boundary elements in dynamics, Comp Mech Pub, Southampton, Boston.
30. Panji, M. and Mojtabazadeh-Hasanlouei, S., 2019. Seismic amplification pattern of the ground surface in presence of twin unlined circular tunnels subjected to SH-waves. J Transp Infrast Eng, 2019. https://doi.org/10.22075/jtie.2019.16056.1342 [In Persian]
31. Panji, M. and Mojtabazadeh-Hasanlouei, S., 2021. Surface motion of alluvial valleys subjected to obliquely incident plane SH-wave propagation. J Earthq Eng. https://doi.org/10.1080/13632469.2021.1927886
32. Panji, M. and Mojtabazadeh-Hasanlouei, S., 2021. On Subsurface Box-Shaped Lined Tunnel under Incident SH-wave Propagation. Front Struct Civ Eng. https://doi.org/10.1007/s11709-021-0740-x
33. Panji, M. and Mojtabazadeh-Hasanlouei, S., 2021. Seismic antiplane response of gaussian-shaped alluvial valley. Sharif J Civ Eng. https://doi.org/10.24200/j30.2020.56151.2801 [In Persian]
34. Mojtabazadeh-Hasanlouei, S., Panji, M. and Kamalian, M., 2020. On subsurface multiple inclusions model under transient SH-wave propagation. Wave Rand Compl Med. https://doi.org/10.1080/17455030.2020.1842553
35. Mojtabazadeh-Hasanlouei, S., Panji, M. and Kamalian, M., 2021. A review on SH-wave propagation for orthotropic topographic features. Bull Earthq Sci Eng, 8(1), 1-15. https://doi.org/10.48303/bese.2021.244240 [In Persian]
36. Leung, K.L., Vardoulakis, I.G., Beskos, D.E. and Tasoulas, J.L., 1991. Vibration isolations by trenches in continuously nonhomogeneous soil by the BEM. Soil Dyn Earthq Eng, 10, 172-179. https://doi.org/10.1016/0267-7261(91)90030-4
37. Hisada, J., 1992. The BEM based on the Green’s function of the layered half-space and the normal mode solution. In Proceedings of Conference on Effects of Surface Geology, Odawara.
38. Rajapakse, R.K.N.D. and Gross, D., 1995. Transient response of an orthotropic elastic meduim with a cavity. Wave Motion, 21, 231-252. https://doi.org/10.1016/0165-2125(94)00050-F
39. Zheng, T. and Dravinski, M., 1998. Amplification of SH-waves by an orthotropic basin. Earthq Eng Struct Dyn, 27, 243-257. https://doi.org/10.1002/(SICI)1096-9845(199803)27:3<243::AID-EQE727>3.0.CO;2-J
40. Zheng, T. and Dravinski, M., 1999. Amplification of waves by an orthotropic basin: Sagittal plane motion. Earthq Eng Struct Dyn, 28, 565-584. https://doi.org/10.1002/(SICI)1096-9845(199906)28:6<565::AID-EQE825>3.0.CO;2-Q
41. Ahmad, S., Leyte, F. and Rajapakse, R.K.N.D., 2001. BEM analysis of two-dimensional elastodynamic problems of anisotropic solids. J Eng Mech, ASCE, 27(2), 149-156. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:2(149)
42. Ge, Z., 2010. Simulation of the seismic response of sedimentary basins with constant-gradient velocity along arbitrary direction using boundary element method: SH-case. Earthq Sci, 23, 149-155. https://doi.org/10.1007/s11589-009-0060-z
43. Dineva, P., Manolis, G., Rangelov, T. and Wuttke, F., 2014. SH-wave scattering in the orthotropic half-plane weakened by cavities using BIEM. Acta Acustica united Acustica, 100, 266-276. https://doi.org/10.3813/AAA.918706
44. Mojtabazadeh-Hasanlouei, S., Panji, M. and Kamalian, M., 2022. Attenuated orthotropic time-domain half-space BEM for SH-wave scattering problems. Geophys J Int. https://doi.org/10.1093/gji/ggac032
45. Kausel, E., 2006. Fundamental solutions in elastodynamics. Cambridge University Press, 9780511546112. Massachusetts Institute of Technology. https://doi.org/10.1017/CBO9780511546112
46. Jin, F., Pekau, O.A. and Zhang, C.H., 2001. A 2‐D time‐domain boundary element method with damping. Int J Numer Meth Eng, 51(6), 647-661. https://doi.org/10.1002/nme.172
47. Barkan, D.D., 1962. Dynamics of Bases and Foundations, McGraw-Hill Series In Soils Engineering and Foundations.
48. Galvin, P. and Domínguez, J., 2007. Analysis of ground motion due to moving surface loads induced by high-speed trains, Eng. Analy. B.E., 31(11), 931-941. https://doi.org/10.1016/j.enganabound.2007.03.003
49. Israil, A.S.M. and Banerjee, P.K., 1990. Advanced time-domain formulation of BEM for two-dimensional transient elastodynamics. Int J Numer Methods Eng, 29(7), 1421-1440. https://doi.org/10.1002/nme.1620290704
50. Ricker, N., 1953. The form and laws of propagation of seismic wavelets. Geophys, 18(1), 10-40. https://doi.org/10.1190/1.1437843
51. Dravinski, M. and Yu, M.C., 2011. Scattering of plane harmonic SH-waves by multiple inclusions. Geophys J Int, 186, 1331-1346. https://doi.org/10.1111/j.1365-246X.2011.05111.x
52. Ahmed, H., 1989. Applications of mode-converted shear waves to rock-property estimation from vertical seismic profiling data. Geophysics, 54(4), 478-485. https://doi.org/10.1190/1.1442674
53. Niehoff, J.W., 2010. The Use of Geophysical Methods to Detect Abandoned Mine Workings. GeoTrends 2010, ASCE. https://doi.org/10.1061/41144(391)11
54. Roy, S. and Stewart, R.R., 2012. Near-surface seismic investigation of barringer (meteor) crater, Arizona. J Env Eng Geophys, 17(3), 117-127. https://doi.org/10.2113/JEEG17.3.117
55. Ellefsen, K.J., Burton, W.C. and Lacombe, P.J., 2012. Integrated characterization of the geologic framework of a contaminated site in west trenton, New Jersey. J Appl Geophys, 79, 71-81. https://doi.org/10.1016/j.jappgeo.2011.12.008
56. Rucker, M.L., Crum, G., Meyers. R. and Lommler, J.C., 2005. Geophysical identification of evaporite dissolution structures beneath a highway alignment. Sinkholes and the Eng Env Impacts Karst, ASCE. https://doi.org/10.1061/40796(177)70
57. Robinson, J.L. and Anderson, N.L., 2008. Geophysical Investigation of the Delaware Avenue Sinkhole Nixa, Missouri. Sinkholes Eng Env Imp Karst, ASCE. https://doi.org/10.1061/41003(327)7
58. Nettles, S., Jarret, B. and Cross, E.C., 2010. Application of surface geophysics for providing a detailed geotechnical assessment of a large resort development site in anguilla, BWI. GeoFlorida 2010, GSP 199, ASCE. https://doi.org/10.1061/41095(365)46
59. Parker, E.H. and Hawman, R.B., 2012. Multichannel analysis of surface waves (MASW) in karst terrain, southwest Georgia: implications for detecting anomalous features and fracture zones. J Eng Env Geophys, 17(3), 129-150. https://doi.org/10.2113/JEEG17.3.129
60. Lingle, R. and Jones, A.H., 1977. Comparison of log and laboratory measured P-wave and S-wave velocities. Soc Prof Well Log Analysts, 18th Annual Logging Symposium.
61. Eastwood, R.L. and Castagna, J.P., 1983. Basis for the Interpretation of Vp/Vs Ratiosd in Complex Lithologies. Soc Prof Well Log Analysts, 24th Annual Logging Symposium.
62. Castagna, J.P., Batzle, M.L. and Eastwood, R.L., 1984. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50(4), 571-581. https://doi.org/10.1190/1.1441933
63. Hiltunen, D.R., 2005. Practical applications of engineering geophysics to help solve tough problems and lead to improved technologies. Soil Dyn Symp Honor Prof Richard D Woods, GSP 134, ASCE. https://doi.org/10.1061/40780(159)3
64. Schön, J.H., 2015. Physical properties of rocks: Fundamentals and principles of petrophysics, Chapter 4. Dev Petrol Sci, 65, 109-118.
65. Zhang, X., Tsang, L., Wang, Y. and Zhao, B., 2009. Petrologic composition model of the upper crust in Bohai Bay basin, China, based on Lame impedances. Applied Geophysics, 6, 327-336. https://doi.org/10.1007/s11770-009-0039-5