\شماره٪٪۱
Zareei, S.A., Ameri, F., Dorostkar, F. and Ahmadi, M., 2017.
Rice husk ash as a partial replacement of cement in high strength
concrete containing micro silica: Evaluating durability and mechanical
properties. {\it Case studies in construction materials}, {\it 7}, pp.73-81.
doi.org/10.1016/j.cscm.2017.05.001.
\شماره٪٪۲
Mardani-Aghabaglou, A., Tuyan, M. and Ramyar, K., 2015. Mechanical
and durability performance of concrete incorporating fine recycled
concrete and glass aggregates. {\it Materials and Structures}, {\it 48},
pp.2629-2640. doi.org/10.1617/s11527-014-0342-3.
\شماره٪٪۳
Afroughsabet, V. and Ozbakkaloglu, T., 2015. Mechanical and
durability properties of high-strength concrete containing steel
and polypropylene fibers. {\it Construction and Building Materials},
{\it 94}, pp.73-82. doi.org/10.1016/j.conbuildmat.2015.06.051.
\شماره٪٪۴
DIN. Test methods for concrete. 1991. Deutsches Institut f\"{u}r
Normung, Germany. 1048 - 5.
\شماره٪٪۵
British Standards Institution. 2009. Testing Hardened Concrete:
Depth of Penetration of Water Under Pressure. BSI, 2009.
\شماره٪٪۶
Naderi, M., 2010. Determine of concrete, stone, mortar, brick
and other construction materials permeability with cylindrical
chamber method. Registration of Patent in Companies and industrial
property Office.
\شماره٪٪۷
Naderi, M., Kaboudan, A. and Kargarfard, K., 2021. Studying
the compressive strength, permeability and reinforcement corrosion
of concrete samples containing silica fume, fly ash and zeolite.
{\it Journal of Structural and Construction Engineering}, {\it 8}(2), pp.25-43.
[In Persian].
doi. 10.22065/jsce.2019.154574.1697.
\شماره٪٪۸
Naderi, M., Kaboudan, A. and Akhavan Sadighi, A., 2018. Comparative
study on water permeability of concrete using cylindrical chamber
method and British standard and its relation with compressive
strength. {\it Journal of Rehabilitation in Civil Engineering}, {\it 6}(1),
pp.116-131. [In Persian].
doi. 10.22075/jrce.2018.13489.1247.
\شماره٪٪۹
Naderi, M., Kaboudan, A. and Amin, A.M., 2020. Experimental and
theoretical study of the effect of concrete constituent materials
on the permeability of hardened concrete using ``Cylindrical
chamber'' method. Thesis of, Kaboudan,A., Ph.D. Student. Imam
Khomeini International University, Civil Department. [In
Persian].
\شماره٪٪۱۰
Standard, A.S.T.M., 2022. Standard test method for pull-off
strength of coatings using portable adhesion testers (ASTM D4541).
ASTM International: West Conshohocken, PA 2022.
\شماره٪٪۱۱
Kakooei, S., Akil, H.M., Jamshidi, M. and Rouhi, J., 2012.
The effects of polypropylene fibers on the properties of reinforced
concrete structures. {\it Construction and Building Materials}, {\it 27}(1),
pp.73-77. doi.org/10.1016/j.conbuildmat.2011.08.015.
\شماره٪٪۱۲
Naderi, M., 2005. Friction-transfer test for the assessment
of in situ strength and adhesion of cementitious materials. {\it Construction
and Building Materials}, {\it 19}(6), pp.454-459.
doi.org/10.1016/j.conbuildmat.2004.07.018.
\شماره٪٪۱۳
Naderi, M. and Saberi, A., 2020. Curing and Shrinkage Effect
on the PMM/Concrete Bond, Using ``Friction-transfer'' and ``Pull-off''
Methods. {\it Ferdowsi Civil Engineering}, {\it
33}(1), pp.85-100. [In Persian].
doi. 10.22067/civil.v1i33.82639.
\شماره٪٪۱۴
Naderi, M., 2007. New twist-off method for the evaluation
of in-situ strength of concrete. {\it Journal of Testing and Evaluation},
{\it 35}(6), pp.602-608.
\شماره٪٪۱۵
Naderi, M. and Shibani, R., 2013. New method for nondestructive
evaluation of concrete strength. {\it Australian Journal of Basic
and Applied Sciences}, {\it 7}(2), pp.438-447.
\شماره٪٪۱۶
Saberi Varzaneh, A. and Naderi, M., 2021. Study of bond
strength between polymer-modified mortars/concrete and their
mechanical properties using ``friction-transfer'' and ``pull-off''
methods. {\it Mechanics of Advanced Composite Structures},
{\it 8}(1), pp.171-184.
doi. 10.22075/macs.2021.20231.1251.
\شماره٪٪۱۷
Varzaneh, A.S. and Naderi, M., 2021. Using" twist-off" and"
pull-off" tests to investigate the effect of polypropylene fibers
on the bond of mortar/concrete and to evaluate their in-situ
compressive strength. {\it Amirkabir Civil Engineering Journal}, {\it 10},
[In Persian]. doi. 10.22060/ceej.2021.19711.7240.
\شماره٪٪۱۸
Saberi Varzaneh, A. and Naderi, M., 2023. Bond Strength
of Fiber-Reinforced Mortar and Concrete Interface under Pre-Stress.
{\it Journal of Rehabilitation in Civil Engineering}, {\it 11}(2), pp.113-130.
doi.10.22075/jrce.2022.25326.1572.
\شماره٪٪۱۹
Naderi, M. and Ghodousian, O., 2012. Adhesion of self-compacting
overlays applied to different concrete substrates and its prediction
by fuzzy logic. {\it The Journal of Adhesion}, {\it 88}(10), pp.848-865.
doi.org/10.1080/00218464.2012.705673.
\شماره٪٪۲۰
Naderi, M., 2008. Effects of cyclic loading, freeze-thaw
and temperature changes on shear bond strengths of different
concrete repair systems. {\it The Journal of Adhesion}, {\it
84}(9), pp.743-763.
doi.org/10.1080/00218460802352934.
\شماره٪٪۲۱
Naderi, M., 2011. An alternative method for in situ determination
of rock strength. {\it Canadian Geotechnical journal},
{\it 48}(12), pp.1901-1905.
doi.org/10.1139/t11-079.
\شماره٪٪۲۲
Naderi, M., 2006. Evaluating in situ shear strength of bituminous
pavements. {\it Proceedings of the Institution of Civil Engineers-Construction
Materials}, {\it 159}(2), pp.61-65. doi.org/10.1680/coma.2006.159.2.61.
\شماره٪٪۲۳
Phan, L.T. and Carino, N.J., 1998. Review of mechanical
properties of HSC at elevated temperature. {\it Journal of Materials
in Civil Engineering}, {\it 10}(1), pp.58-65.
doi.org/10.1061/(ASCE)0899-1561(1998)10:1(58).
\شماره٪٪۲۴
Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C., 2006.
Residual stress-strain relationship for concrete after exposure
to high temperatures. {\it Cement and Concrete Research},
{\it 36}(10), pp.1999-2005.
doi.org/10.1016/j.cemconres.2006.05.029.
\شماره٪٪۲۵
Kou, S.C., Poon, C.S. and Etxeberria, M., 2014. Residue
strength, water absorption and pore size distributions of recycled
aggregate concrete after exposure to elevated temperatures. {\it Cement
and Concrete Composites}, {\it 53}, pp.73-82.
doi.org/10.1016/j.cemconcomp.2014.06.001.
\شماره٪٪۲۶
Kim, W., Choi, H. and Lee, T., 2023. Residual Compressive
strength prediction model for concrete subject to high temperatures
using ultrasonic pulse velocity. {\it Materials}, {\it 16}(2), p.515.
doi.org/10.3390/ma16020515.
\شماره٪٪۲۷
Balagam, V. and Rao, K., 2019. Effect of thermal cycles
on concrete: An overview. {\it Int J Res Eng Appl Manag}, {\it 5}, pp.6-14.
doi: 10.35291/2454-9150.2019.0162.
\شماره٪٪۲۸
An, M., Huang, H., Wang, Y. and Zhao, G., 2020. Effect of
thermal cycling on the properties of high-performance concrete:
Microstructure and Mechanism. {\it Construction and Building Materials},
{\it 243}, p.118310.
doi.org/10.1016/j.conbuildmat.2020.118310.
\شماره٪٪۲۹
Huang, H., An, M., Wang, Y., Yu, Z. and Ji, W., 2019. Effect
of environmental thermal fatigue on concrete performance based
on mesostructural and microstructural analyses. {\it Construction
and Building Materials}, {\it 207}, pp.450-462.
doi.org/10.1016/j.conbuildmat.2019.02.072.
\شماره٪٪۳۰
Khan, M.S., Almutairi, S. and Abbas, H., 2022. Mechanical
properties of concrete subjected to cyclic thermal loading. {\it European
Journal of Environmental and Civil Engineering}. {\it 26}(7), pp.2855-2868.
doi.org/10.1080/19648189.2020.1782771.
\شماره٪٪۳۱
Ye, Z., Guo, G., Su, L. and Jiang, Y., 2021. Experimental
study on mechanical properties of concrete under sub-high temperature
cycles. {\it In Journal of Physics: Conference Series}, {\it 1978}(1),
p.012007. IOP Publishing.
doi.10.1088/1742-6596/1978/1/012007.
\شماره٪٪۳۲
Gan, L., Xu, W., Shen, Z., Xu, L., Zhang, W., Zhang, H.,
Abbas, M.A. and Chen, G., 2023. Experimental and numerical investigations
on damage evolution of concrete under sulfate attack and freeze-thaw
cycles. {\it Journal of Building Engineering}, {\it 71}, p.106469.
doi.org/10.1016/j.jobe.2023.106469.
\شماره٪٪۳۳
Esmaeili, H. and Hajiani Boushehrian, A., 2019. Effect of
nano titanium dioxide on the permeability and compression strength
of concrete. {\it Concrete Research}, {\it 12}(4), pp.111-122. [In Persian].
doi.10.22124/jcr.2019.5888.1132
\شماره٪٪۳۴
Golestan, A. and Hajiani Boushehrian, A., 2017. Investigation
the application of the steel fiber in special steel fiber concrete
and its effect on concrete permeability and compression strength
parameters. {\it Concrete Research}, {\it 9}(2), pp.111-121. [In Persian].
\شماره٪٪۳۵
Astm, C., 2019. Standard test method for sieve analysis
of fine and coarse aggregates. ASTM C136-19.
\شماره٪٪۳۶
Astm, A.S.T.M. C127, 2015. Standard test method for relative
density (specific gravity) and absorption of coarse aggregate.
ASTM West Conshohocken, PA.
\شماره٪٪۳۷
Astm, A.S.T.M. C128, 2015. Standard test method for relative
density (specific gravity) and absorption of fine aggregate.
ASTM West Conshohocken, PA.
\شماره٪٪۳۸
ASTM. Standard D6944, 2020. Standard practice for resistance
of cured coatings to thermal cycling. ASTM West Conshohocken,
PA.
\شماره٪٪۳۹
American Society For Testing And Materials., 2014. ASTM C1679:
Standard Practice for Measuring Hydration Kinetics of Hydraulic
Cementitious Mixtures Using Isothermal Calorimetry.
\شماره٪٪۴۰
Naderi, M., Maleki, B., and Amini, F., 2017. Assessing the permeability of the
oil and its components into porous concrete using new cylindrical chamber
method.
{\it Sharif
Journal of Civil Engineering}, {\it 33}(1.1), pp.89-93. [In Persian].
doi. 10.24200/j30.2017.1107.
\شماره٪٪۴۱
Tarighat, A., Mohammadi, M. and Modarres, Y., 2019. Tsohracsoccsg.
{\it Sharif Journal of Civil Engineering}, {\it
34}(4.2), pp.75-82. [In Persian].
doi. 10.24200/j30.2019.1446