1. Abé, M. and Shimamura, M., 2014. Performance of railway bridges during the 2011 TÅhoku earthquake. of Performance of Constructed Facilities, 28(1), pp.13–23. DOI:10.1061/(ASCE)CF.1943-5509.0000379.
3. ACI Committee 318, 2019. 318-19 Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute. DOI:10.14359/51716937.
4. ACI Committee 318, 2019. Building Code Requirements for Structural Concrete (ACI 318-19). American Concrete Institute.
5. ACI Committee 439, 2007. Types of Mechanical Splices for Reinforcing Bars. American Concrete Institute.
6. Al-Jelawy, H. M., 2022. Experimental and numerical investigations on monotonic tensile behavior of grouted sleeve couplers with different splicing configurations.
Engineering Structures,
265, 114434.
https://DOI:10.1016/j.engstruct.2022.114434.
7. ASTM International, (n.d.).
ASTM E8 / E8M - 16ae1 Standard Test Methods for Tension Testing of Metallic Materials. Available at:
https://www.astm.org/Standards/E8 (Accessed: 19 October 2020).
8. Bai, A. S. H. and Ingham, J. M., 2009. Seismic performance of mechanically coupled reinforcing bars. Magazine of Concrete Research, 61(7), pp.529–537. DOI:10.1680/macr.2008.00098.
11. Bompa, D. V. and Elghazouli, A. Y., 2019. Inelastic cyclic behaviour of RC members incorporating threaded reinforcement couplers.
Engineering Structures, 180, pp. 468–483.
https://DOI:10.1016/j.engstruct.2018.11.053.
12. British Standards Institution, 2004. Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings. British Standards Institution.
13. Çelik, S. and Ersozlu, I., 2014. Investigation of microstructure and mechanical properties of friction welded AISI 316 and CK 45 steels. High Temperature Materials and Processes. DOI:10.1515/htmp-2013-0042.
14. Dabiri, H., Kheyroddin, A. and Faramarzi, A., 2022. Predicting tensile strength of spliced and non-spliced steel bars using machine learning- and regression-based methods.
Construction and Building Materials.
https://DOI:10.1016/j.conbuildmat.2022.126835.
16. Einea, A., Yehia, S. and Tadros, M. K., 1999. Lap splices in confined concrete. ACI Structural Journal, 96(6), pp. 947–955. DOI:10.14359/769.
17. Emre, H. E. and Kaçar, R., 2015. Effect of post-weld heat treatment process on microstructure and mechanical properties of friction welded dissimilar drill pipe. Materials Research. DOI:10.1590/1516-1439.308114.
18. European Committee for Standardization, 2004. Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization.
19. Ghayeb, H. H., Abdul Razak, H., Ramli Sulong, N. H., Mo, K. H., Abutaha, F. and Gordan, M., 2021., 2021. Performance of mechanical steel bar splices using grouted couplers under uniaxial tension.
of Building Engineering.
https://DOI:10.1016/j.jobe.2020.101892.
20. Harinkhede, S. and Varghese, V., 2021. Investigation on design of new techniques in mechanical rebar coupler as an alternative to lap splices. In Lecture Notes in Mechanical Engineering, Springer, Singapore, pp. 57–61. DOI:10.1007/978-981-15-8025-3_7.
23. Hulshizer, A. J., Ucciferro, J. J. and Gray, G. E., 1994. Mechanical reinforcement couplings meet demands of strength and constructibility. Concrete International, 16(12), pp. 47–52.
24. ISO/DIS 15835, 2018. Steel for the Reinforcement of Concrete - Reinforcement Couplers for Mechanical Splices of Bars (Parts 1 to 3). International Organization for Standardization, Geneva, Switzerland.
26. Kuscu, H., Becenen, I. and Sahin, M., 2008. Evaluation of temperature and properties at the interface of AISI 1040 steels joined by friction welding. Assembly Automation. DOI:10.1108/01445150810904468.
27. Lee, C. S. and Han, S. W., 2019. Cyclic behaviour of lightly-reinforced concrete columns with short lap splices subjected to unidirectional and bidirectional loadings.
Engineering Structures.
https://DOI:10.1016/j.engstruct.2019.03.108.
29. Liu, C., Pan, L., Liu, H., Tong, H., Yang, Y. and Chen, W., 2020. Experimental and numerical investigation on mechanical properties of grouted-sleeve splices.
Construction and Building Materials.
https://DOI:10.1016/j.conbuildmat.2020.120441.
30. Maalekian, M., 2007. Friction welding - Critical assessment of literature. Science and Technology of Welding and Joining. DOI:10.1179/174329307X249333.
31. Najafgholipour, M. A., Dehghan, S. M., Khani, M. and Heidari, A., 2018. The performance of lap splices in RC beams under inelastic reversed cyclic loading.
Structures.
https://DOI:10.1016/j.istruc.2018.07.011
32. Nateghi-Alahi, F. and Shokrzadeh, M. R., 2019. Behavior considerations for mechanical rebar couplers. In Behavior Considerations for Mechanical Rebar Couplers. University of Tokyo, pp. 30–41. Available at: https://isn.ac/XBHB-EZGFF.
34. Seshu Kumar, A., Khadeer, S. A., Rajinikanth, V., Pahari, S. and Ravi Kumar, B., 2021. Evaluation of bond interface characteristics of rotary friction welded carbon steel to low alloy steel pipe joints.
Materials Science and Engineering https://DOI:10.1016/j.msea.2021.141844.
35. Sharbatdar, M. K., Jafaria, O. M. and Karimib, M. S., 2018. Experimental evaluation of splicing of longitudinal bars with forging welding in flexural reinforced concrete beams. Advances in Concrete Construction. DOI:10.12989/acc.2018.6.5.509.
36. Shokrzadeh, M. R., Aziminejhad, A. and Sarvghadmoghaddam, A., 2016. Hysteretic behavior of concrete connections strengthened by X-shape FRP strips.
Analysis of Structure and Earthquake, 12(4), pp. 29–40. Available at:
https://civil-strj.maragheh.iau.ir/article_525485.html (Accessed: 8 November 2016). [In Persian].
37. Shokrzadeh, M. R., Nateghi-E, Mansoori, M. R. and Javadi, P., 2022. Failure area evaluation of the coupler with threaded bar: Experimental and numerical study. J. of Advanced Structural Engineering, 12(1), pp. 531–543. DOI:10.1007/ijase.2022.692294.
38. Shokrzadeh, M. R., Nateghi-E, Mansoori, M. R. and Javadi, P., 2023. The improvement of the threaded-based mechanical splice by modifying the threaded system: Study of techniques cold rolling and rotating friction welding
. J. of Building Engineering, 80, 107964.
https://DOI:10.1016/j.jobe.2023.107964.
39. Shokrzadeh, M. R., 2024. Experimental study of seismic behavior and modification of the failure region of mechanical bar splices in reinforced concrete vertical elements. Islamic Azad University Science and Research Branch, pp. 175–488. DOI:10.32432/brs-290180.
40. Shokrzadeh, M. R. and Nateghi-Alahi, F., 2022. Evaluation of hybrid NSM-CFRP technical bars and FRP sheets for seismic rehabilitation of a concrete bridge pier. Bridge Structures, 18(3–4), pp. 75–88. DOI:10.3233/brs-290180.
42. Tazarv, M., LaVoy, M., Sjurseth, T., Greeneway, E. and Wehbe, N., 2023. Analysis and design of mechanically spliced precast bridge columns.
Engineering Structures, 280, 115726.
https://DOI:10.1016/j.engstruct.2023.115726.
45. Woodhead Publishing Series in Welding and Other Joining Technologies, 2014. In Control of Welding Distortion in Thin-Plate Fabrication. DOI:10.1016/b978-0-85709-047-8.50016-9.
46. Yamamoto, R. I., Fukada, Y., Tatsumi, M. and Ueyama, K., 2002. New quality inspection method for gas pressure welds. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan). DOI:10.2219/rtriqr.43.7.
47. Yilmaz, M., Kaluc, E., Tülbentci, K. and Karagöz, S., 1996. Investigation into the weld zone of friction welded C45/HS6-5-2 dissimilar steel joints. of Materials Science Letters. DOI:10.1007/BF00591663.
48. Zhao, E., Song, C., Zhang, X., Zhou, Q. and Yan, K., 2022. Experimental study on monotonic, cyclic mechanics and fatigue performance of pressed cone sleeve splices.
Structures.
https://DOI:10.1016/j.istruc.2022.03.050.