ارزیابی هوشمند آسیب و پیش بینی طیف آسیب لرزه‌یی تحت اثر زلزله های نزدیک گسل در ایران

نوع مقاله : پژوهشی

نویسندگان

دانشکده‌ی مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

10.24200/j30.2024.63776.3287

چکیده

پیش‌بینی طیف آسیب لرزه‌‌یی یک سازه، که هر دو ویژگی سازه‌‌یی و زلزله را در بر می‌گیرد، در زمان طراحی سازه‌های جدید و هم برای ارزیابی تاب‌آوری سازه‌های موجود، اهمیت زیادی دارد. هدف پژوهش حاضر، ارزیابی دقیق آسیب و پیش‌بینی طیف آسیب لرزه‌‌یی تحت اثر زلزله‌های ایران با استفاده از برنامه‌نویسی بیان ژن است. برای این منظور، یک سیستم یک درجه‌ی آزادی غیرکشسان تحت مجموعه‌‌یی از رکوردهای زلزله‌های ایران برای محاسبه‌ی آسیب طیفی ‏استفاده شده است. سپس با استفاده از برنامه‌نویسی بیان ژن، مدل ریاضی صریح با تعریف یک تابع برازندگی برای آن استخراج و همچنین، شاخص آسیب پارک- انگ برای تعیین کمیت طیف آسیب استفاده شده است. هر دو ویژگی سازه‌‌یی و زلزله در پیش‌بینی مدل‌ طیف آسیب لرزه‌‌یی ‏نقش خواهند داشت. در انتها، یک معادله‌ی ساده‌شده برای اندازه‌گیری طیف آسیب لرزه‌‌یی سازه‌ها، برای حرکت‌های زمین در ایران، که هر دو ویژگی را در بر می‌گیرد، پیشنهاد شده ‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intelligent assessment of damage and prediction of seismic damage spectrum under the effect of Near-Fault earthquakes in Iran

نویسندگان [English]

  • R. Fazli
  • M. Shamekhi Amiri
  • H. Pahlavan
M.Sc. Student in Earthquake Civil Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahroud, Iran
چکیده [English]

Predicting seismic damage spectra and capturing both structural and earthquake features are crucial for the design of new buildings and also for the resilience evaluation of existing ones. The research objective of this article is to accurately assess and predict the seismic damage spectrum caused by earthquakes in Iran using gene expression programming. Gene expression programming is a method for learning and optimization rooted in genetic principles and molecular biology. For this purpose, a single-degree-of-freedom nonlinear system is considered, along with a collection of earthquake records from Iran, for the exact computation of the damage spectrum. Subsequently, a mathematical model is developed by applying gene expression programming and genetic programming algorithms. The Park-Ang damage index is used to compute the seismic damage or damage spectra level. Both the structural characteristics and seismic properties are significant factors in predicting the seismic damage spectrum model. Finally, a simplified equation has been suggested for assessing the potential seismic damage spectrum of the structures exposed to ground motions in Iran, capturing both structural and earthquake features. This study demonstrates the significant impact of structural and seismic parameters on the seismic damage spectrum, highlighting that an increase in the resistance reduction factor correlates with a rise in damage spectrum across structures of varying vibration periods. The changes in the damage spectrum indicate that as the ductility coefficient increases, the spectral damage decreases. The impact of the damping ratio on SDOF systems in the damage spectrum demonstrates that an increase in the damping ratio leads to an increase in the damage spectrum. The effects of the post-yield stiffness ratio in SDOF systems for the damage spectrum showed that a higher stiffness ratio results in the structure exhibiting less damage. The relationship between the Park-Ang index constant and the damage spectrum is such that an increase in the Park-Ang index constant leads to a corresponding rise in the damage spectrum. The influence of soil type on the damage spectrum is comparatively less significant than the impacts of the other parameters discussed.

کلیدواژه‌ها [English]

  • Seismic damage spectra"
  • " Park-Ang damage index"
  • "Gene expression programming (GEP)
  • Inelastic one-degree-of-freedom system (SDOF) "
  • " Near Field Earthquake
1. Gharehbaghi, S., 2018. Damage Controlled Optimum Seismic Design of Reinforced Concrete Framed Structures. Structural Engineering and Mechanics, 65 )1(, pp.53-68. https://doi.org/10.12989/sem.2018.65.1.053 2. Samanta, A., Megawati, K. and Pan, T.C., 2012. Duration-Dependent Inelastic Response Spectra and Effect of Ground Motion Duration. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, pp. 24-28. 3. Teran-Gilmore, A., Sanchez-Badillo, A. and Espinosa-Johnson, M., 2010. Performance-Based Seismic Design of Reinforced Concrete Ductile Buildings Subjected to Large Energy Demands. Earthquakes and Structures, 1 )1(, pp.69-92. https://doi.org/10.12989/eas.2010.1.1.069 4. Bozorgnia, Y. and Bertero, V.V., 2003. Damage Spectra: Characteristics and Applications to Seismic Risk Reduction. Journal of Structural Engineering, 129 )10(, pp.1330-1340. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1330) 5. Kunnath, S.K. and Chai, Y.H., 2004. Cumulative Damage‐Based Inelastic Cyclic Demand Spectrum. Earthquake Engineering & Structural Dynamics, 33 )4(, pp.499-520. https://doi.org/10.1002/eqe.363 6. Cosenza, E., Manfredi, G. and Polese, M., 2009. Simplified Method to Include Cumulative Damage in the Seismic Response of Single-Degree-of-Freedom Systems. Journal of Engineering Mechanics, 135 )10(, pp.1081-1088. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:10(1081) 7. Zhai, C.H., Wen, W.P., Chen, Z., Li, S. and Xie, L.L., 2013. Damage Spectra for the Mainshock–Aftershock Sequence-Type Ground Motions. Soil Dynamics and Earthquake Engineering, 45, pp.1-12. https://doi.org/10.1016/j.soildyn.2012.10.001. 8. Greco, R., Marano, G.C. and Fiore, A., 2017. Damage-Based Inelastic Seismic Spectra. International Journal of Structural Stability and Dynamics, 17 )10(, p.1750115. https://doi.org/10.1142/S0219455417501152 9. Park, Y.J. and Ang, A.H.S., 1985. Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of Structural Engineering, 111 )4(, pp.722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722) 10. Wen, W., Ji, D., Zhai, C., Li, X. and Sun, P., 2018. Damage Spectra of the Mainshock-Aftershock Ground Motions at Soft Soil Sites. Soil Dynamics and Earthquake Engineering, 115, pp.815-825. https://doi.org/10.1016/j.soildyn.2018.08.016 11. Wen, W., Zhai, C. and Ji, D., 2018. Damage Spectra of Global Crustal Seismic Sequences Considering Scaling Issues of Aftershock Ground Motions. Earthquake Engineering & Structural Dynamics, 47 )10(, pp.2076-2093. https://doi.org/10.1002/eqe.3056 12. Gharehbaghi, S., Gandomi, M., Plevris, V. and Gandomi, A.H., 2021. Prediction of Seismic Damage Spectra Using Computational Intelligence Methods. Computers & Structures, 253, p.106584. https://doi.org/10.1016/j.compstruc.2021.106584 13. Gandomi, A.H. and Roke, D.A., 2015. Assessment of Artificial Neural Network and Genetic Programming as Predictive Tools. Advances in Engineering Software, 88, pp.63-72. https://doi.org/10.1016/j.advengsoft.2015.05.007 14. Anil, K., 2020. Chopra Dynamics of Structures: Theory and Applications to Earthquake Engineering. Fifth Edition in SI Units, pp.276-319 15. Ferreira, C., 2001. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. arXiv preprint cs/0102027. https://doi.org/10.48550/arXiv.cs/0102027 16. Ferreira, C., 2006. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Vol. 21, Springer. 17. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A. and Von Winterfeldt, D., 2003. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), pp. 733-752. https://doi.org/10.1193/1.1623497 18. Park, Y.J., Ang, A.H. and Wen, Y.K., 1987. Damage-Limiting Aseismic Design of Buildings. Earthquake Spectra, 3(1), pp. 1-26. https://doi.org/10.1193/1.1585416. 19. Gepsoft, 2014. Fitness Functions for Regression. [online] Available at: http://www.gepsoft.com 20. Road, Housing & Urban Development Research Center and Iran Strong Motion Network, n.d. [online] Available at: https://smd.bhrc.ac.ir/Portal 21. Biglari, M., Hadzima-Nyarko, M. and Formisano, A., 2022. Seismic Damage Index Spectra Considering Site Acceleration Records: The Case Study of a Historical School in Kermanshah. Buildings, 12(10), p. 1736. https://doi.org/10.3390/buildings12101736. 22. Pan, X., Lin, Z., Zhang, L. and Zheng, Z., 2024. Damage Spectra of SDOF Structures Under Tsunami Actions Considering the Nonlinear Dynamic Analysis Method. Journal of Earthquake and Tsunami, p. 2350034. https://doi.org/10.1142/S1793431123500343 23. Ferreira, C. and Ferreira, C., 2006. Numerical Constants and the GEP-RNC Algorithm. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, pp. 181-232. https://doi.org/10.1007/3-540-32849-1_5 24. Engelbrecht, A.P., 2007. Computational Intelligence: An Introduction. John Wiley and Sons, pp. 36-46.