تاثیر آلاینده های نفتی مختلف بر روی خواص نشست پذیری ماسه ی رس دار

نوع مقاله : یادداشت فنی

نویسندگان

دانشکده‌ی فنی، دانشگاه گیلان، رشت

10.24200/j30.2024.63856.3291

چکیده

تأثیر نوع آلاینده‌های نفتی در ویژگی‌های ژئوتکنیکی بخصوص نشست‌پذیری خاک، موضوع جالبی است که کمتر در مطالعات پیشین بررسی شده است. در پژوهش حاضر، خصوصیات نشست‌پذیری ماسه‌ی رس‌دار آلوده به مقدار 3، 6، و 9 درصد وزن خشک خاک و آلوده به 4 نوع آلاینده‌ی نفتی ارزیابی شده است. تصاویر میکروسکوپ الکترونی (SEM) تأیید کرده‌اند که آلاینده‌های نفتی، ساختار خاک را به ساختار لخته‌شده‌ی پراکنده تغییر می‌دهند. هر چه ویسکوزیته‌ی آلاینده‌ی نفتی بیشتر باشد، لخته‌های بزرگ‌تری ایجاد می‌شود. نتایج پژوهش حاضر نشان داد که آلاینده‌های نفتی علاوه‌بر اینکه فضای منافذ بین ذرات را افزایش می‌دهند، با پوشاندن ذرات خاک، مساحت سطح ویژه‌ی (SSA) خاک را کاهش می‌دهند و در نتیجه، با کاهش جذب آب توسط ذرات خاک، امکان تخلیه‌ی سریع‌تر آب را فراهم می‌کنند. این امر باعث افزایش ضریب فشردگی (CC)، نشست تحکیمی، ضریب تحکیم (CV)، و ضریب نفوذپذیری می‌‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of various oil pollutants on the compressibility properties of clayey sand

نویسندگان [English]

  • M. Arabani
  • H. Haghsheno
Professor, Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
چکیده [English]

Soil pollution by oil and its derivatives is a highly controversial environmental problem that also causes geological and geotechnical harm. The effect of oil pollutant type on geotechnical characteristics, especially soil compressibility, is an interesting topic neglected in previous studies, which needs further investigation. The research results on this topic can be used in the compressibility analysis of structures built on soils likely to be contaminated with oil pollutants. Using a one-dimensional consolidation test, this study evaluated the compressibility properties of clayey sand contaminated with 3, 6, and 9% (dry weight of the soil) of four oil pollutants: used motor oil, crude oil, diesel, and kerosene. Scanning electron microscopy (SEM) was also employed to assess the microstructural interaction between the soil and the four oil pollutants. In addition to the low dielectric constant of oil pollutants, their high viscosity played a crucial role in altering the compressibility properties of clayey sand. The SEM micrographs confirmed that oil pollutants change the soil structure into a flocculated but dispersed one. The higher the viscosity of the oil pollutant, the larger the formed clots. Besides increasing the pore space between particles and facilitating water movement by covering the soil particles, oil pollutants reduced the soil's specific surface area (SSA) and water absorption by the soil particles. This caused the water to drain faster, ultimately increasing the compaction coefficient (CC), consolidation settlement, consolidation coefficient (CV), and permeability coefficient (k). The higher the viscosity of the oil contaminant, the higher the surface energy at the oil-water interface, which decreases water drainage. The highest compressibility belonged to the samples contaminated with kerosene, followed by those infected with diesel, crude oil, and used motor oil. Thus, special attention should be paid to settling clayey sand contaminated with kerosene in geotechnical plans.

کلیدواژه‌ها [English]

  • Oil-polluted soil
  • Compressibility properties
  • Viscosity
  • Clayey sand
1. Haghsheno, H., and Arabani, M., 2023. Stabilization and solidification of oil-polluted soils using secondary stabilizers and industrial wastes. International Journal of Environmental Science and Technology, 21(2), pp 2129-2162. https://doi.org/10.1007/s13762-023-05285-x. 2. Singh, S., Srivastava, R., and John, S., 2008. Settlement characteristics of clayey soils contaminated with petroleum hydrocarbons. Soil & Sediment Contamination, 17(3), pp 290-300. https://doi.org/10.1080/15320380802007028 3. Abousnina, R. M., Manalo, A., Shiau, J., and Lokuge, W., 2015. Effects of light crude oil contamination on the physical and mechanical properties of fine sand. Soil and Sediment Contamination: An International Journal, 24(8), pp 833-845. https://doi.org/10.1080/15320383.2015.1058338 4. Haghsheno, H., and Arabani, M., 2023. The effect of primary stabilizers for stabilization/solidification of oil-polluted soils–a review. Environmental Technology Reviews, 12(1), pp 337-358. https://doi.org/10.1080/21622515.2023.2215460 5. Arabani, M., and Haghsheno, H., 2023. The effect of various environmental conditions on stabilization/solidification (S/S) of oil-contaminated soil using alkaline activation of granulated blast furnace slag (GBFS). Construction and Building Materials, 409, p.134022. https://doi.org/10.1016/j. conbuildmat .2023.134022 6. Al-Hamaiedh, H. D., and Maaitah, O. N., 2011. Treatment of oil polluted soil using electrochemical method. Alexandria Engineering Journal, 50(1), pp 105-110. https://doi.org/10.1016/j.aej.2011.01.010. 7. Dudley, B., 2018. BP statistical review of world energy 2018. Energy economic, Centre for energy economics research and policy. British Petroleum, Available via https://www.bp.com/en/global/corporate/ energy-economics/statistical-review-of-world-ergy/electricity. 8. Kandiyoti, R., Herod, A., Bartle, K. D., and Morgan, T. J., 2016. Solid fuels and heavy hydrocarbon liquids: thermal characterization and analysis, Elsevier Science. 9. Van der Perk, M., 2013. Soil and water contamination. CRC Press. 10. Payatakes, A., 1982. Dynamics of oil ganglia during immiscible displacement in water-wet porous media.Annual Review of Fluid Mechanics, 14, pp. 365-393. DOI: 10.1146/annurev.fl.14.010182.002053 11. Karimpour-Fard, M., and Alimohammadi-jelodar, R., 2018. Permeability of Two Clayey Soils Exposed to Petroleum Products and Organic Solvents. Civil Engineering Infrastructures Journal, 51(1), pp 131-146. https://doi.org/10.7508/ CEIJ.2018.01.008 12. Mackenzie, J., 1970. Interaction between oil drops and mineral surfaces. Society of Mining Engineers, AIME, Transaction, 247, pp. 202-208. https://doi.org/10.1016/j.fuel.2022.124402 13. Arabani, M., and Haghsheno, H., 2024. The effect of temperature curing on total petroleum hydrocarbon (TPH) values of slag-based polluted sample leachate. Materials Letters, 356, p. 135542. https://doi.org/10.1016/j.matlet.2023.135542. 14. Haghsheno, H., and Arabani, M., 2022. Geotechnical properties of oil-polluted soil: a review. Environmental Science and Pollution Research, 29(22), pp 32670-32701. https://doi.org/10.1007/s11356-022-19418-1. 15. Ur-Rehman, H., Abduljauwad, S., and Akram, T. 2007. Geotechnical behavior of oil-contaminated fine-grained soils. Electronic Journal of Geotechnical Engineering, 12, pp. 1-12. 16. Jia, Y., Wu, Q., Shang, H., Yang, Z. N., and Shan, H., 2011. The influence of oil contamination on the geotechnical properties of coastal sediments in the Yellow River Delta, China. Bulletin of Engineering Geology and the Environment, 70(3), pp 517-525.https://doi.org/10.1007/ s10064-011-0349-8 17. Kermani, M., and Ebadi, T., 2012. The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contamination: An International Journal, 21(5), pp 655-671. .https://doi.org/10.1080/15320383.2012.672486. 18. Ota, J.O., 2013. The effect of light crude oil contamination on the geotechnical properties of kaolinite clay soil. Doctoral dissertation, Anglia Ruskin University. 19. Al-Adhamii, R. A., Fattah, M. Y., and Al-Hadidi, M. T., 2018. Crude oil effect on the clayey soil mechanical and physical properties. International Journal of Engineering & Technology, 7(4.20), pp 453-458. https://doi.org/10.14419/ijet.v7i4 .20.26242. 20. Salimnezhad, A., Soltani-Jigheh, H., and Soorki, A. A., 2021. Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), pp 653-670.https://doi.org/10.1016/j.jrmge.2020.11.011 21. Talukdar, D., and Saikia, B., 2013. Effect of crude oil on some consolidation properties of clayey soil. International Journal of Emerging Technology and Advanced Engineering, 3(2), pp 117-120. 22. Khosravi, E., Ghasemzadeh, H., Sabour, M. R., and Yazdani, H., 2013. Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, pp.11-16. https://doi.org/10.1016/j.enggeo.2013.08.004 23. Jedari, C., and Farahani, M., 2018. Permeability and Compression Characteristics of Clay Contaminated with Kerosene and Gasoil. Mapta Journal of Architecture, Urbanism and Civil Engineering (MJAUCE), 1(3), pp 1-10. 24. Safehian, H., Rajabi, A. M., and Ghasemzadeh, H., 2018. Effect of diesel-contamination on geotechnical properties of illite soil. Engineering Geology, 241, pp. 55-63. https://doi.org/10.1016/j.enggeo. 2018.04.020. 25. Karkush, M. O., and Kareem, Z. A., 2017. Investigation of the Impacts of fuel oil on the geotechnical properties of cohesive soil. Engineering Journal, 21, pp. 127-137. DOI: https://doi.org/10.4186/ej.2017.21.4.127 26. Karkush, M. O., and Jihad, A. G., 2020. Studying the Geotechnical Properties of Clayey Soil Contaminated by Kerosene. in Key Engineering Materials. Trans Tech Publ, 857, pp. 383-393. https://doi.org/10.4028/www.scientific.net/KEM.857.383. 27. Medhat, F. K., Carpuzcu, M., Cabalar, A. F., and Al-Obaidi, A., 2019. Influence of Kawergosk Refinery Waste Oil on Geotechnical Properties of Contaminated Clayey Soil. Polytechnic Journal, 9(1), pp 64-73. https://doi.org/10.25156/ptj.v9n1y 2019.pp64-73 28. Nazir, A.K., 2011. Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal, 50, pp. 331-335. https://doi.org/10.1016/j.aej.2011.05.002 29. Guoy, G., 1910. Constitution of the electric charge at the surface of an electrolyte. J Physique, 9, pp. 457-67. 30. Chapman, D.L., 1913. LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25, pp. 475-481. 31. Quigley, R. M., and Fernandez, F., 1991. Hydrocarbon liquids and clay microstructure. Microstructure of Fine-Grained Sediments. Frontiers in Sedimentary Geology. Springer, New York. https://doi.org/10.1007/ 978-1-4612-4428-8_50 32. Carey, A., and Hayzen, A., 2013. Machinery Lubrication—The Dielectric Constant and Oil Analysis. Emerson Process Management. 33. Al-Aghbari, M., Dutta, R., and Mohamedzeini, Y., 2011. Effect of diesel and gasoline on the properties of sands—a comparative study. International Journal of Geotechnical Engineering, 5(1), pp 61-68.https://doi.org/10.3328/IJGE.2011.05.01.61-68 34. Rojas, J., Salinas, L., and Garnica, I., 2003. Influence of the kinematic viscosity of oil contaminants in the compaction and hydraulic conductivity in certain type of soils. Groundwater engineering: recent advances: Proceedings of the International Symposium on Groundwater Problems Related to Geo-environment, Okayama, Japan. Taylor & Francis, 7, pp.954-961. https://doi.org/10.3844/ajassp.2010.954.961 35. Nazari Heris, M., Aghajani, S., Hajialilue-Bonab, M., and Vafaei Molamahmood, H., 2020. Effects of Lead and Gasoline Contamination on Geotechnical Properties of Clayey Soils. Soil and Sediment Contamination: An International Journal, 29(3), pp 340-354. https://doi.org/10.1080/ 15320383.2020.1719973 36. Kogbara, R. B., Yi, Y., and Al-Tabbaa, A., 2011. Process envelopes for stabilisation/solidification of contaminated soil using lime–slag blend. Environmental Science and Pollution Research, 18(8), pp 1286-1296. https://doi.org/10.1007/s11356 -011-0480-x 37. Oluwatuyi, O. E., and Ojuri, O. O., 2017. Environmental performance of lime–rice husk ash stabilized lateritic soil contaminated with lead or naphthalene. Geotechnical and Geological Engineering, 35(6), pp 2947-2964. https://doi.org/ 10.1007/s10706-017-0294-9 38. Al-Adhamii, R. A., Rahil, F. H., Kadhim, Y. M., and Atia, T. A., 2020. Geotechnical properties of gypseous soil contaminated with crude oil. MS&E, 737(1), pp 012115.https://doi.org/10.1088/1757-899X/737/1/012115. 39. Nasehi, S. A., Uromeihy, A., Nikudel, M. R., and Morsali, A., 2016. Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotechnical and Geological Engineering, 34(1), pp 333-345. https://doi.org/10.1007 /s10706-015-9948-7 40. Khamehchiyan, M., Charkhabi, A. H., and Tajik, M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89(3-4), pp 220-229.https://doi.org/10.1016/j.enggeo.2021.106021 41. Kogbara, R. B., and Al-Tabbaa, A., 2011. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil. Science of the Total Environment, 409(11), pp 2325-2335. https://doi.org/10.1016/j. scitotenv.2011.02.037. 42. Ostovar, M., Ghiassi, R., Mehdizadeh, M. J., and Shariatmadari, N., 2021. Effects of crude oil on geotechnical specification of sandy soils. Soil and Sediment Contamination: An International Journal, 30(1), pp 58-73. https://doi.org/10. 1080/15320383.2020.1792410. 43. Bojnourdi, S., Narani, S. S., Abbaspour, M., Ebadi, T., and Hosseini, S. M. M., 2020. Hydro-mechanical properties of unreinforced and fiber-reinforced used motor oil (UMO)-contaminated sand-bentonite mixtures. Engineering Geology, 279, pp. 105886. https://doi.org/10.1016/j. enggeo.2020.105886. 44. De Souza Correia, N., Portelinha, F. H. M., Mendes, I. S., and da Silva, J. W. B., 2020. Lime treatment of a diesel-contaminated coarse-grained soil for reuse in geotechnical applications. International Journal of Geo-Engineering, 11(1), pp 1-15. https://doi.org/10.1186/s40703-020-00115-2. 45. Zheng, X., Zhang, J., Zheng, T., Liang, C., and Wang, H., 2014. A developed technique for measuring water content in oil-contaminated porous media. Environmental Earth Sciences, 71(3), pp 1349-1356. https://doi.org/10.1007/ s12665-013-2541-6 46. Hamidi, A., and Karimi, A. H., 2021. Effect of Phytoremediation on Compression Characteristics of Silty Clayey Sand Contaminated with Crude Oil. International Journal of Civil Engineering, 19, pp. 973-995. https://doi.org/10.1007/ s40999-021-00609-9 47. Akinwumi, I., Diwa, D., and Obianigwe, N., 2014. Effects of crude oil contamination on the index properties, strength and permeability of lateritic clay. International Journal of Applied Sciences and Engineering Research, 3(4), pp 816-824. https://doi.org/ 10.6088/ijaser. 030400007. 48. Askarbioki, M., Kargaran Bafghi, F., Mokhtari, M., and Khaleghi, M., 2019. Impact of gasoline contamination on mechanical behavior of sandy clay soil. Journal of Mining and Environment, 10(2), pp 389-399. https://doi.org/10.22044/ jme.2019.7660.1622. 49. Alhassan, H. M., and Fagge, S. A., 2013. Effects of crude oil, low point pour fuel oil and vacuum gas oil contamination on the geotechnical properties sand, clay and laterite soils. Int J Eng Res Appl, 3(1), pp 1947-1954. 50. Karkush, M., and AbdulKareem, M., 2018. Effects of residuse oil contamination on the geotechnical properties of clay soil. Association of Arab Universities Journal of Engineering Sciences, 25(5), pp 243-255. 51. Izdebska-Mucha, D., Trzcińsk, J., Żbik, M. S., and Frost, R. L., 2011. Influence of hydrocarbon contamination on clay soil microstructure. Clay Minerals, 46(1), pp 47-58.