1. Peck, R.B., 1969. Deep excavations and tunneling in soft ground.State of the art volume, In 7th ICSMFE, pp.225-290.
2. Terzaghi, K., Peck, R.B. and Mesri, G., 1996.Soil Mechanics in Engineering Practice. John Wiley & Sons.
3. Chang, J.D. and Wong, K.S., 1996. Apparent pressure diagram for braced excavations in soft clay with diaphragm wall. In Geotechnical Aspects of Underground Construction in Soft Ground, pp.87-92.
4. Rechards Jr, R. and Elms, D.G., 1979. Seismic behavior of gravity retaining walls.
Journal of the Geotechnical Engineering Division,
105(4), pp.449-464.
doi.org/10.1061/AJGEB6.0000783
5. Gazetas, G., Psarropoulos, P.N., Anastasopoulos, I. and Gerolymos, N., 2004. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation.
Soil Dynamics and Earthquake Engineering,
24(7), pp.537-550. doi.org/
10.1016/j.soildyn.2004.02.005
6. Madabhushi, S.P.G. and Zeng, X., 2006. Seismic response of flexible cantilever retaining walls with dry backfill.Geomechanics and Geoengineering: An International Journal, 1(4), pp.275-289.
7. Qu, H.L., Luo, H., Liu, L. and Liu, Y., 2017. Analysis of dynamic coupling characteristics of the slope reinforced by sheet pile wall.
Shock and Vibration, pp.1-10.
doi.org/10.1155/2017/9043518
8. Lin, Y.L., Cheng, X.M., Yang, G.L. and Li, Y., 2018. Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test.Soil Dynamics and Earthquake Engineering, 115, pp.352-364.
10. Mu, L. and Huang, M., 2016. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation.
Tunnelling and Underground Space Technology,
52, pp.12-22.
doi.org/10.1016/j.tust.2015.11.001
11. Zhang, W., Goh, A.T. and Xuan, F., 2015. A simple prediction model for wall deflection caused by braced excavation in clays.
Computers and Geotechnics,
63, pp.67-72. doi.org/
10.1016/j.compgeo.2014.09.001
12. Gandomi, A.H., Kashani, A.R., Roke, D.A. and Mousavi, M., 2015. Optimization of retaining wall design using recent swarm intelligence techniques.
Engineering Structures,
103, pp.72-84.
doi.org/10.1016/j.engstruct.2015.08.034
13. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M., 2010. Economic design of retaining wall using particle swarm optimization with passive congregation. Australian Journal of Basic and Applied Sciences, 4(11), pp.5500–5507.
14. Khajehzadeh, M. and Eslami, M., 2012. Gravitational search algorithm for optimization of retaining structures. Indian Journal of Science and Technology, 5(1), pp.1821-1827.
15. Ceranic, B., Fryer, C. and Baines, R.W., 2001. An application of simulate annealing to the optimum design of reinforced concrete retaining structures. Computers and Structures, 79(17), pp.1569–1581.
16. Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F., 2008. A parametric study of optimum earth-retaining walls by simulated annealing.
Engineering Structures,
30(3), pp.821–830.
doi.org/10.1016/j.engstruct.2007.05.023
17. Kaveh, A. and Shakouri, M.A.A., 2011. Harmony search based algorithm for the optimum cost design of reinforced concrete cantilever retaining walls. International Journal of Civil Engineering, 9(1), pp.1–8.
18. Öztürk, H.T., Dede, T. and Türker, E., 2020. Optimum design of reinforced concrete counterfort retaining walls using TLBO, Jaya algorithm.
Structures,
25, pp.285-296.
doi.org/10.1016/j.istruc.2020.03.020
20. Kaveh, A., Biabani Hamedani, K. and Zaerreza, A., 2021. A set theoretical shuffled shepherd optimization algorithm for optimal design of cantilever retaining wall structures.Engineering with Computers, 37, pp.3265-3282.
21. Kalemci, E.N., İkizler, S.B., Dede, T. and Angın, Z., 2020. Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm.
Structures,
23, pp.245-253.
doi.org/10.1016/j.istruc.2019.09.013
22. Koopialipoor, M., Murlidhar, B.R., Hedayat, A., Armaghani, D.J., Gordan, B. and Mohamad, E.T., 2020. The use of new intelligent techniques in designing retaining walls.Engineering with Computers, 36, pp.283-294.
23. Aydogdu, I., 2017. Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights.Engineering Optimization, 49(3), pp.381-400.
24. Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H. and Mohamad, E., 2019. Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques.
Engineering with Computers,
35, pp.945-954. doi.org
/10.1007/s00366-018-0642-2
25. Taiyari, F., Kharghani, M. and Hajihassani, M., 2020. Optimal design of pile wall retaining system during deep excavation using swarm intelligence technique.
Structures,
28, pp.1991-1999.
doi.org/10.1016/j.istruc.2020.10.044
26. Taiyari, F., Hajihassani, M. and Kharghani, M., 2022. Efficiency of the evolutionary methods on the optimal design of secant pile retaining systems in a deep excavation. Neural Computing and Applications, 34(22), pp.20313-20325.
27. Iranian National Building Codes Compilation Office, 2020. Iranian National Building Code, Part 9: Reinforced Concrete Buildings Design, Ministry of Housing and Urban Development (MHUD).
28. Goldberg, D.E., 2010. Genetic algorithms in search, optimization and machine learning. MA: Addison-Wesley, Reading.
29. Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization. In Proceeding of the ICNN’95-international conference on neural networks, 4, pp.1942–1948.
30. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M., 2006. The bees algorithm-a novel tool for complex optimization problems. In Intelligent Production Machines and Systems, pp. 454-459.
31. Simon, D., 2008. Biogeography-based optimizatio. IEEE Transactions on Evolutionary Computation,12(6), pp.702–713.
32. Jeong, S., 1992. Nonlinear three-dimensional analysis of downdrag on pile groups. PhD Thesis, Texas A&M University.
34. Yang, Z., Lu, J. and Elgamal, A., 2008. OpenSees soil models and solid-fluid fully coupled elements. user’s manual, 1(27).
36. Randolph, M.F. and Wroth, C.P., Application of the failure state in undrained simple shear to the shaft capacity of driven piles.
Geotechnique,
31(1), pp.143-157.
doi.org/10.1680/geot.1981.31.1.143
37. Loukidis, D. and Salgado, R., 2008. Analysis of the shaft resistance of non-displacement piles in sand.
Géotechnique,
58(4), pp.283-296.
doi.org/10.1680/geot.2008.58.4.283