1. Amezaga, J., Baresel, C., Destouni, G., Göbel, J., Gren, I.-M., Hannerz, F., Larsén, L., Loredo, J., Malmström, M. & Nuttall, C. 2004. Mining impacts on the fresh water environment: technical and managerial guidelines for catchment-focused remediation. Mine water and the environment, 23, 1-80.
2. Wieland, M. & Fan, B. H. The activities of the international commission on large dams (ICOLD) in the earthquake safety of large dams. Proceedings of the 13th world conference on earthquake engineering, 2004.
3. Bhanbhro, R., Auchar Zardari, M., Ahmed Memon, B., Ali Soomro, M., Edeskär, T. & Knutsson, S. 2021. Mechanical properties and particle breakage of uniform-sized tailings material.
Journal of Materials in Civil Engineering, 33, 04020481.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003597
4. Essayad, K. & Aubertin, M. 2021. Consolidation of hard rock tailings under positive and negative pore-water pressures: testing procedures and experimental results.
Canadian Geotechnical Journal, 58, 49-65.
https://doi.org/10.1139/cgj-2019-0594
5. Ma, C., Li, R., Zhang, C., Guo, X. & Li, X. 2023. A study on compressibility and permeability of tailings with different particle sizes under high pressure.
Bulletin of Engineering Geology and the Environment, 82
, 106.
https://doi.org/10.1007/s10064-023-03117-3
7. Wagner, A. C., de Sousa Silva, J. P., de Azambuja Carvalho, J. V., Rissoli, A. L. C., Cacciari, P. P., Chaves, H. M., Scheuermann Filho, H. C. & Consoli, N. C. 2023. Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths.
Journal of Rock Mechanics and Geotechnical Engineering, 15, 1883-1894.
https://doi.org/10.1016/j.jrmge.2022.11.013
8. Mmbando, E., Fourie, A. & Reid, D. 2023. Mechanics of an iron ore tailings exhibiting transitional behaviour.
Geotechnical and Geological Engineering, 41, 2211-2220.
https://doi.org/10.1007/s10706-023-02379-8
9. Carneiro, J. J. V., Faria, A. d. O. & Júnior, M. P. d. S. 2023. Calibration of Modified Cam-Clay Parameters for Red Mud Tailings: A Case Study.
10. Halliday, A., Vulpe, C., Fourie, A. & Arenas, A. Limitations of Classic Constitutive Soil Models and Their Suitability to Represent Tailings Behaviour. International Conference of the International Association for Computer Methods and Advances in Geomechanics, 2022. Springer, 102-109.
https://doi.org/10.1007/978-3-031-12851-6_13
11. Mánica, M. A., Arroyo, M., Gens, A. & Monforte, L. 2022. Application of a critical state model to the Merriespruit tailings dam failure.
Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175, 151-165.
https://doi.org/10.1680/jgeen.21.00001
12. Graham, J., Noonan, M. & Lew, K. 1983. Yield states and stress–strain relationships in a natural plastic clay.
Canadian geotechnical journal, 20, 502-516.
https://doi.org/10.1139/t83-058
13. Yasufuku, N., Murata, H. & Hyodo, M. 1991. Yield characteristics of anisotropically consolidated sand under low and high stresses.
Soils and Foundations, 31, 95-109.
https://doi.org/10.3208/sandf1972.31.95
17. Witowski, M., Zabielska-Adamska, K. & Łukasik, S. 2023. Stress–strain responses of calcium fly ash.
Journal of Geotechnical and Geoenvironmental Engineering, 149, 04023108.
https://doi.org /10.1061/JGGEFK.GTENG-9968
18. Ahmadi, A. & Bazaz, J. B. 2023. A new analytical model to predict the effect of suction removal on vacuum preloading of fine copper tailings. Engineering Geology, 322, 107176.
19. Ahmadi, A. & Bazaz, J. B. 2024. A comprehensive study on the effects of initial water content, suction magnitude, and drainage zone size on self-weight consolidation and vacuum preloading of soft soils and slurried mine tailings.
https://doi.org/10.1016/j.enggeo.2023.107176
20. Baradaran, S., Rahimi, J., Ameri, M. & Maleki, A. 2024. Mechanical performance of asphalt mixture containing eco-friendly additive by recycling PET.
Case studies in construction materials, 20, e02740.
https://doi.org/10.1016/j.cscm.2023.e02740
22. Daliri, F., Simms, P. & Sivathayalan, S. 2015. Discussion of “Stiffness and strength governing the static liquefaction of tailings” by F. Schnaid, J. Bedin, AJP Viana da Fonseca, and L. de Moura Costa Filho.
Journal of Geotechnical and Geoenvironmental Engineering, 141, 07015023.
https://doi.org/10.1061/(asce)gt.1943-5606.0001328
24. Murthy, T., Loukidis, D., Carraro, J., Prezzi, M. & Salgado, R. 2007. Undrained monotonic response of clean and silty sands.
Géotechnique, 57, 273-288.
https://doi.org/10.1680/geot.2007.57.3.273
27. Ladd, R. 1978. Preparing test specimens using undercompaction. Geotechnical testing journal, 1, 16-23.
28. Head, K. H. 1998. Manual of soil laboratory testing. Volume 3: effective stress tests.. ed. 2.
29. Lade, P. V. 2016. Triaxial testing of soils, John Wiley & Sons.
31. Casagrande, A. The determination of the pre-consolidation load and its practical significance. Proc. 1st Int. Conf. Soil Mech., 1936. 3-60.
32. Graham, J., Pinkney, R., Lew, K. & Trainor, P. 1982. Curve-fitting and laboratory data.
Canadian Geotechnical Journal, 19, 201-205.
https://doi.org/10.1139/t82-023
33. Roscoe, K. H. & Burland, J. B. 1968. On the generalized stress-strain behaviour of wet clay.