A Review of the Physics of Debris Flows and the Significance of Employing the Unsaturated Soil Conditions in Estimating the Erosion Volume

Document Type : Research Note

Authors

Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.

Abstract

Debris flows are natural disasters in mountainous regions and are formed when loose sedimentary deposits are carried by runoff and flow rapidly downslope. They are known for their high sediment concentrations and fast movements, which can cause significant casualties and damage to infrastructures. In contrast to floods and rock avalanches, where only one of the fluid or solid phases affects their dynamics, debris flows are influenced by both fluid and solid phases. In recent decades, the occurrence of these flows has increased due to climate change. Predicting and managing damages caused by these flows requires a systematic approach that involves identifying the causes, estimating the volume and distance, and assessing vulnerable areas and at-risk infrastructures. However, the interaction between solid and fluid phases gives rise to complexity in interpreting the development process. This complexity becomes even more exacerbated when it comes to employing the principles of unsaturated soil mechanics to investigate the behavior of unsaturated debris flows and the occurrence of unsaturated bed erosion. In this review paper, some of the factors influencing the behavior of debris flows, their physics, and the complex interactions between the flowing mass and the erosive bed, particularly unsaturated beds, are summarized and discussed. It is highlighted that the high mobility of the debris flows results in sudden and rapid fluctuations in stress-independent variables. These fluctuations can create regions of increased and decreased resistance, leading to localized variations in the stability of the flow. Based on the analysis of the existing literature, it can be concluded that there are limited numerical models capable of adequately capturing the instantaneous nature of debris flows. As a result, there is a strong need for the development of appropriate theoretical frameworks. Furthermore, in saturated soils, the pore pressure diffusion time decreases with increasing permeability. The pore pressure in these beds, therefore, dissipates rapidly during erosion. In contrast, the pore pressure diffusion time is longer in unsaturated beds. Consequently, with an increase in the water content, the erosion rate becomes significantly faster. This, in turn, results in a more significant flow momentum in wet beds compared to dryer ones.

Keywords

Main Subjects


1. Hungr, O., McDougall, S. and Bovis, M., 2005. Entrainment of Material by Debris Flows, In Debris-Flow Hazards and Related Phenomena, Springer Praxis Books, pp.135-158, Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: https://doi.org/10.1007/3-540-27129-5_7.
2. Iverson, R.M., 2014. Debris flows: behaviour and hazard assessment. Geology Today, 30(1), pp.15-20. DOI: https://doi.org/10.1111/gto.12037.
3. Iverson, R.M., 1997. The physics of debris flows. Reviews of Geophysics, 35(3), pp.245-296. DOI: https://doi.org/10.1029/97RG00426.
4. Iverson, R.M., Reid, M.E., Logan, M., LaHusen, R.G., Godt, J.W. and Griswold, J.P., 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2), pp.116-121. DOI: https://doi.org/10.1038/ngeo1040.
5. Iverson, R.M., 2005. Debris-flow mechanics. Debris-Flow Hazards and Related Phenomena, 8, pp.105-134. DOI: https://doi.org/10.1007/3-540-27129-5_6.
6. Tian, S., Hu, G., Chen, N., Rahman, M., Han, Z., Somos-Valenzuela, M. and Maurice Habumugisha, J., 2022. Extreme climate and tectonic controls on the generation of a large-scale, low-frequency debris flow. Catena, 212, pp.106086. DOI: https://doi.org/10.1016/j.catena.2022.106086.
7. Hirschberg, J., Fatichi, S., Bennett, G.L., McArdell, B.W., Peleg, N., Lane, S.N., Schlunegger, F. and Molnar, P., 2021. Climate change impacts on sediment yield and debris‐flow activity in an alpine catchment. Journal of Geophysical Research: Earth Surface, 126(1), pp.e2020JF005739. DOI: https://doi.org/10.1029/2020JF005739.
8. Wang, D., Chen, Z., He, S., Liu, Y. and Tang, H., 2018. Measuring and estimating the impact pressure of debris flows on bridge piers based on large-scale laboratory experiments. Landslides, 15, pp.1331-1345. DOI: https://doi.org/10.1007/s10346-018-0944-x.
9. Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C., Hübl, J., Miyata, S., Smith, J.B. and Yin, H.Y., 2019. Debris-flow monitoring and warning: Review and examples. Earth-Science Reviews, 199, pp.102981. DOI: https://doi.org/10.1016/j.earscirev.2019.102981.
10. Lin, C.W., Shieh, C.L., Yuan, B.D., Shieh, Y.C., Liu, S.H. and Lee, S.Y., 2004. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71(1-2), pp.49-61. DOI: https://doi.org/10.1016/S0013-7952(03)00125-X.
11 .Sato, H.P. and Harp, E.L., 2009. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7. 9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides, 6, pp.153-159. DOI: https://doi.org/10.1007/s10346-009-0147-6.
12.Iverson, R.M., Reid, M.E. and LaHusen, R.G., 1997. Debris-flow mobilization from landslides. Annual Review of Earth and Planetary Sciences, 25(1), pp.85-138. DOI: https://doi.org/10.1146/annurev.earth.25.1.85.
13.Bogaard, T.A. and Greco, R., 2016. Landslide hydrology: from hydrology to pore pressure. Wiley Interdisciplinary Reviews: Water, 3(3), pp.439-459. DOI: https://doi.org/10.1002/wat2.1126.
14.Gregoretti, C., Degetto, M., Bernard, M., Crucil, G., Pimazzoni, A., De Vido, G., Berti, M., Simoni, A. and Lanzoni, S., 2016. Runoff of small rocky headwater catchments: Field observations and hydrological modeling. Water Resources Research, 52(10), pp.8138-8158. DOI: https://doi.org/10.1002/2016WR018675.
15. Pierson, T.C., 2020. Flow Behavior of Channelized Debris Flows, Mount St. Helens, Washington, In Hillslope Processes, A.D. Abrahams, pp.269-296, Routledge. DOI: https://doi.org/10.4324/9781003028840-13.
16.De Haas, T., McArdell, B.W., Nijland, W., Åberg, A.S., Hirschberg, J. and Huguenin, P., 2022. Flow and bed conditions jointly control debris‐flow erosion and bulking. Geophysical Research Letters, 49(10), pp. e2021GL097611. DOI: https://doi.org/10.1029/2021GL097611.
17.Iverson, R.M., Logan, M., LaHusen, R.G. and Berti, M., 2010. The perfect debris flow? Aggregated results from 28 large‐scale experiments. Journal of Geophysical Research: Earth Surface, 115(F3), pp.2009JF001514. DOI: https://doi.org/10.1029/2009JF001514.
18.Pouliquen, O., Delour, J. and Savage, S.B., 1997. Fingering in granular flows. Nature, 386(6627), pp.816-817. DOI: https://doi.org/10.1038/386816a0.
19.Tiranti, D., Bonetto, S. and Mandrone, G., 2008. Quantitative basin characterisation to refine debris-flow triggering criteria and processes: an example from the Italian Western Alps. Landslides, 5, pp.45-57. DOI: https://doi.org/10.1007/s10346-007-0101-4.
20. Hürlimann, M., McArdell, B.W. and Rickli, C., 2015. Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology, 232, pp.20-32. DOI: https://doi.org/10.1016/j.geomorph.2014.11.030.
21.McCoy, S.W., Kean, J.W., Coe, J.A., Staley, D.M., Wasklewicz, T.A. and Tucker, G.E., 2010. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology, 38(8), pp.735-738. DOI: https://doi.org/10.1130/G30928.1.
22.D’Agostino, V., Cesca, M. and Marchi, L., 2010. Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology, 115(3-4), pp.294-304. DOI: https://doi.org/10.1016/j.geomorph.2009.06.032.
23.Tayyebi, S.M., Pastor, M. and Stickle, M.M., 2021. Two-phase SPH numerical study of pore-water pressure effect on debris flows mobility: Yu Tung debris flow. Computers and Geotechnics, 132, pp.103973. DOI: https://doi.org/10.1016/j.compgeo.2020.103973.
24.Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen, R.G. and Gray, J.M.N.T., 2012. Grain‐size segregation and levee formation in geophysical mass flows. Journal of Geophysical Research: Earth Surface, 117(F1), pp.2011JF002185. DOI: https://doi.org/10.1029/2011JF002185.
25.Coussot, P., 1995. Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Physical Review Letters, 74(20), pp.3971. DOI: https://doi.org/10.1103/PhysRevLett.74.3971.
26.Takayama, S., Karasawa, R. and Imaizumi, F., 2024. Depth-averaged mixture model for development processes of debris flows over a steep unsaturated mobile bed. Landslides, pp.1-15. DOI: https://doi.org/10.1007/s10346-023-02202-8.
27.Di Carluccio, G., Pinyol, N.M., Alonso, E.E. and Hürlimann, M., 2024. Liquefaction-induced flow-like landslides: The case of Valarties (Spain). Géotechnique, 74(4), pp.307-324. DOI: https://doi.org/10.1680/jgeot.21.00112.
28.Zheng, H., Niu, W., Mao, W. and Huang, Y., 2024. Effect of gravity on granular material flows. Computers and Geotechnics, 170, pp.106328. DOI: https://doi.org/10.1016/j.compgeo.2024.106328.
29. Hungr, O., Leroueil, S. and Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides, 11, pp.167-194. DOI: https://doi.org/10.1007/s10346-013-0436-y.
30.Song, D., Bai, Y., Chen, X.Q., Zhou, G.G., Choi, C.E., Pasuto, A. and Peng, P., 2022. Assessment of debris flow multiple-surge load model based on the physical process of debris-barrier interaction. Landslides, 19(5), pp.1165-1177. DOI: https://doi.org/10.1007/s10346-021-01778-3.
31.Bowman, E.T., Laue, J., Imre, B. and Springman, S.M., 2010. Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal, 47(7), pp.742-762. DOI: https://doi.org/10.1139/T09-141.
32. Iverson, R.M. and George, D.L., 2014. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2170), pp.20130819. DOI: https://doi.org/10.1098/rspa.2013.0819.
33.Song, D., Chen, X., Sadeghi, H., Zhong, W., Hu, H. and Liu, W., 2023. Impact behavior of dense debris flows regulated by pore‐pressure feedback. Journal of Geophysical Research: Earth Surface, 128(12), pp.e2023JF007074. DOI: https://doi.org/10.1029/2023JF007074.
34. Major, J.J., 2000. Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics. Journal of Sedimentary Research, 70(1), pp.64-83. DOI: https://doi.org/10.1306/2DC408FF-0E47-11D7-8643000102C1865D.
35.Zheng, H., Shi, Z., Kaitna, R., Zhao, F., de Haas, T. and Hanley, K.J., 2023. Control mechanisms of pore-pressure dissipation in debris flows. Engineering Geology, 317, pp.107076. DOI: https://doi.org/10.1016/j.enggeo.2023.107076.
36.Major, J.J. and Iverson, R.M., 1999. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. Geological Society of America Bulletin, 111(10), pp.1424-1434. DOI: https://doi.org/10.1130/00167606(1999)111<1424:DFDEOP>2.3.CO;2.
37. Gong, X.L., Chen, X.Q., Chen, J.G. and Song, D.R., 2023. Effects of material composition on deposition characteristics of runoff-generated debris flows. Landslides, 20(12), pp.2603-2618. DOI: https://doi.org/10.1007/s10346-023-02129-0.
38. De Haas, T., Braat, L., Leuven, J.R.F.W., Lokhorst, I.R. and Kleinhans, M.G., 2015. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. JGR Earth Surface, 120, pp.1949–1972. DOI: https://doi.org/10.1002/2015JF003525.
39. Atkinson, J., 1993. An Introduction to the Mechanics of Soils and Foundations: Through Critical State Soil Mechanics, McGraw-Hill Book Company (UK) Ltd.
40. Das, B.M., 2019. Advanced Soil Mechanics, CRC press.
41.Fleming, R.W., Ellen, S.D. and Algus, M.A., 1989. Transformation of dilative and contractive landslide debris into debris flows—an example from Marin County, California. Engineering Geology, 27(1-4), pp.201-223. DOI: https://doi.org/10.1016/0013-7952(89)90034-3.
42.Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E. and Brien, D.L., 2000. Acute sensitivity of landslide rates to initial soil porosity. Science, 290(5491), pp.513-516. DOI: https://doi.org/10.1126/science.290.5491.513.
43. Moore, P.L. and Iverson, N.R., 2002. Slow episodic shear of granular materials regulated by dilatant strengthening. Geology, 30(9), pp.843-846. DOI: https://doi.org/10.1130/00917613(2002)030<0843:SESOGM>2.0.CO;2.
44. Iverson, R.M., 2005. Regulation of landslide motion by dilatancy and pore pressure feedback. Journal of Geophysical Research: Earth Surface, 110(F2), pp.2004JF000268. DOI: https://doi.org/10.1029/2004JF000268.
45.Anderson, S.A. and Sitar, N., 1995. Analysis of rainfall-induced debris flows. Journal of Geotechnical Engineering, 121(7), pp.544-552. DOI: https://doi.org/10.1061/(ASCE)07339410(1995)121:7.(544).
46.Iverson, R.M. and LaHusen, R.G., 1989. Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science, 246(4931), pp.796-799. DOI: https://doi.org/10.1126/science.246.4931.796.
47. Fuchu, D., Lee, C.F. and Sijing, W., 1999. Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong. Engineering Geology, 51(4), pp.279-290. DOI: https://doi.org/10.1016/S0013-7952(98)00047-7.
48.Budhu, M., 2011. Soil Mechanics and Foundations, 3rd Ed., Wiley, New York.
49.Wang, G., Sassa, K. and Fukuoka, H., 2003. Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm. Engineering Geology, 69(3-4), pp.309-330. DOI: https://doi.org/10.1016/S0013-7952(02)00289-2.
50.Iverson, R.M. and Ouyang, C., 2015. Entrainment of bed material by Earth‐surface mass flows: Review and reformulation of depth‐integrated theory. Reviews of Geophysics, 53(1), pp.27-58. DOI: https://doi.org/10.1002/2013RG000447.
51. Pudasaini, S.P. and Krautblatter, M., 2021. The mechanics of landslide mobility with erosion. Nature Communications, 12(1), pp.6793. DOI: https://doi.org/10.1038/s41467-021-26959-5.
52. Song, P. and Choi, C.E., 2021. Revealing the importance of capillary and collisional stresses on soil bed erosion induced by debris flows. Journal of Geophysical Research: Earth Surface, 126(5), pp.e2020JF005930. DOI: https://doi.org/10.1029/2020JF005930.
53.Medina, V., Hürlimann, M. and Bateman, A., 2008. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5(1), pp.127-142. DOI: https://doi.org/10.1007/s10346-007-0102-3.
54.Berger, C., McArdell, B.W. and Schlunegger, F., 2011. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research: Earth Surface, 116(F1), pp.n/a-n/a. DOI: https://doi.org/10.1029/2010JF001722.
55. McDougall, S. and Hungr, O., 2005. Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5), pp.1437-1448. DOI: https://doi.org/10.1139/t05-064.
56.Choi, C.E. and Song, P., 2023. New unsaturated erosion model for landslide: Effects of flow particle size and debunking the importance of frictional stress. Engineering Geology, 315, pp.107024. DOI: https://doi.org/10.1016/j.enggeo.2023.107024.
57. Iverson, R.M., 2012. Elementary theory of bed‐sediment entrainment by debris flows and avalanches. Journal of Geophysical Research: Earth Surface, 117(F3). DOI: https://doi.org/10.1029/2011JF002189.
58. McCoy, S.W., Kean, J.W., Coe, J.A., Tucker, G.E., Staley, D.M. and Wasklewicz, T.A., 2012. Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment. J. Geophys. Res., 117, pp.2011JF002278. DOI: https://doi.org/10.1029/2011JF002278.
59. Hu, W., Van Asch, T.W., Zheng, Y., Li, Y., Xu, Q., Huang, R. and McSaveney, M., 2022. Unraveling the effect of a two-layer system on the mobility of rapid gravitational flows. Engineering Geology, 297, pp.106481. DOI: https://doi.org/10.1016/j.enggeo.2021.106481.
60. Hu, W., Zheng, Y., McSaveny, M., Xu, Q. and van Asch, T., 2023. Fluidization of bed material caused by shear thinning during rock avalanche entrainment: Insights from flume tests and rheological experiments. Engineering Geology, 325, pp.107276. DOI: https://doi.org/10.1016/j.enggeo.2023.107276.
61. Hungr, O. and Evans, S.G., 2004. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geological Society of America Bulletin, 116(9-10), pp.1240-1252. DOI: https://doi.org/10.1130/B25362.1.
62. An, H., Ouyang, C., Wang, F., Xu, Q., Wang, D., Yang, W. and Fan, T., 2022. Comprehensive analysis and numerical simulation of a large debris flow in the Meilong catchment, China. Engineering Geology, 298, pp.106546. DOI: https://doi.org/10.1016/j.enggeo.2022.106546.
63. Fredlund, D.G., Xing, A., Fredlund, M.D. and Barbour, S.L., 1996. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Canadian Geotechnical Journal, 33(3), pp.440-448. DOI: https://doi.org/10.1139/t96-065.
64. Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E. and Clifton, A.W., 1996. Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33(3), pp.379-392. DOI: https://doi.org/10.1139/t96-060.
65. Fredlund, D.G. and Morgenstern, N.R., 1977. Stress state variables for unsaturated soils. Journal of The Geotechnical Engineering Division, 103(5), pp.447-466. DOI: https://doi.org/10.1061/AJGEB6.0000423.
66. Lu, N., 2008. Is matric suction a stress variable?. Journal of Geotechnical and Geoenvironmental Engineering, 134(7), pp.899-905. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(899).
67.Roelofs, L., Nota, E.W., Flipsen, T.C., Colucci, P. and de Haas, T., 2023. How bed composition affects erosion by debris flows—An experimental assessment. Geophysical Research Letters, 50(14), pp.e2023GL103294. DOI: https://doi.org/10.1029/2023GL103294.
68.Baggio, T., Mergili, M. and D’Agostino, V., 2021. Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017. Geomorphology, 381, pp.107664. DOI: https://doi.org/10.1016/j.geomorph.2021.107664.
69. Li, P., Wang, J., Hu, K. and Xie, J., 2024. Shedding effects of sediment composition and bed morphology on debris flow dynamics and entrainment mechanism: Insights from laboratory experiments. Engineering Geology, pp.107495. DOI: https://doi.org/10.1016/j.enggeo.2024.107495.
70. Chen, J., Zhang, W., Cao, C., Yin, H., Wang, J., Li, W. and Zheng, Y., 2024. The effect of the check dam on the sediment transport and control in debris flow events. Engineering Geology, 329, pp.107397. DOI: https://doi.org/10.1016/j.enggeo.2023.107397.
71. Zheng, H., Hu, X., Shi, Z., Shen, D. and De Haas, T., 2024. Deciphering controls of pore‐pressure evolution on sediment bed erosion by debris flows. Geophysical Research Letters, 51(5), pp. e2024GL108583. DOI: https://doi.org/10.1029/2024GL108583.
72 .Song, P., Yang, J., Choi, C.E. and Zhang, J., 2024. Experimental investigation on scouring vs Mass failure of unsaturated soil bed: Implications for debris flow initiation and erosion. Journal of Geophysical Research: Earth Surface, 129(4), pp. e2023JF007275. DOI: https://doi.org/10.1029/2023JF007275.
73. Iverson, R.M., 2015. Scaling and design of landslide and debris-flow experiments. Geomorphology, 244, pp.9-20. DOI: https://doi.org/10.1016/j.geomorph.2015.02.033.
74.Yerro, A., Alonso, E.E. and Pinyol, N.M., 2015. The material point method for unsaturated soils. Géotechnique, 65(3), pp.201-217. DOI: http://dx.doi.org/10.1680/geot.14.P.163.
75. Li, Y., Zhang, J.M. and Wang, R., 2024. An explicit material point and finite volume sequentially coupled method for simulating large deformation problems in saturated soil. Computers and Geotechnics, 170, pp.106270. DOI: https://doi.org/10.1016/j.compgeo.2024.106270.