1. Kalantari, B., 2013. Foundations on collapsible soils: a review.
Proceedings of the Institution of Civil Engineers-Forensic Engineering, 166(2), pp. 57-63.
https://doi.org/10.1680/feng.12.00016
2. Haeri, S. M., Akbari Garakani, A., Roohparvar, H. R., Desai, C. S., Seyed Ghafouri, S. M. H., and Salemi Kouchesfahani, K., 2019.
Testing and constitutive modeling of lime-stabilized collapsible loess. I: experimental investigations. International journal of geomechanics, 19(4), pp. 04019006.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001364
5. Vakili, A.H., Selamat, M.R. and Moayedi, H., 2013. Effects of using pozzolan and portland cement in the treatment of dispersive clay.
The Scientific World Journal.
https://doi.org/10.1155/2013/547615
7. Ke, J., McNeil, M., Price, L., Khanna, N.Z. and Zhou, N., 2013. Estimation of CO
2 emissions from China's cement production: methodologies and uncertainties.
Energy Policy 57: pp.172–181.
https://doi.org/10.1016/j.enpol.2013.01.028
9. Alijani Shirvani, R. and Noorzad, R., 2019. Effectiveness of sludge ash of wood and paper mill as nontraditional additive for clayey soil treatment. Journal of Materials in Civil Engineering, 31(10), 04019230.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002877
11. Gupta, D. and Kumar, A., 2017. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material
. Journal of Rock Mechanics and Geotechnical Engineering, 9(1), pp.159-169.
https://doi.org/10.1016/j.jrmge.2016.05.010
12. Arora, S. and Kumar, A., 2019. Bearing capacity of square footing resting on fibre-reinforced pond ash overlying soft clay
. International Journal of Geosynthetics and Ground Engineering, 5, pp.1-11.
https://doi.org/10.1007/s40891-019-0155-0
13. Gupta, D., Kumar, A., Kumar, V., Priyadarshee, A. and Sharma, V., 2019. Performance of pond ash and rice husk ash in clay: a comparative study.
In Recycled Waste Materials: Proceedings of EGRWSE 2018, pp.145-153. Springer Singapore.
https://doi.org/10.1007/978-981-13-7017-5_17
14. Gupta, G., Sood, H. and Gupta, P., 2020. Performance evaluation of pavement geomaterials stabilized with pond ash and brick kiln dust using advanced cyclic triaxial testing.
Materials, 13(3), p.553.
https://doi.org/10.3390/ma13030553
15. Mogili, S., Mudavath, H. and Gonavaram, K.K., 2021. Effect of Stabilization on Geomechanical Properties of Pond Ash for Pavement Subbase Application.
In Transportation, Water and Environmental Geotechnics: Proceedings of Indian Geotechnical Conference 2020 Volume 4, pp.177-187. Springer Singapore.
https://doi.org/10.1007/978-981-16-2260-1_17
16. Pesarakloo, V., Lajevardi, S.H., MolaAbasi, H. and Mirhosseini, S.M., 2024. Potential application of sludge pond ash as a novel additive for clay stabilization.
Physics and Chemistry of the Earth, Parts A/B/C, 133, p.103534.
https://doi.org/10.1016/j.pce.2023.103534
19. ASTM D2487-17., 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
https://doi.org/10.1520/D2487-17
20. ASTM D698-12., 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft
3 (600 kN-m/m
3)).
https://doi.org/10.1520/D0698-12
24. Seng, S. and Tanaka, H., 2012. Properties of very soft clays: A study of thixotropic hardening and behavior under low consolidation pressure
. Soils and Foundations, 52(2), pp.335-345.
http://doi.org/10.1016/j.sandf.2012.02.010
25. Khajeh, A., Chenari, R.J., Payan, M. and MolaAbasi, H., 2023. Assessing the effect of lime-zeolite on geotechnical properties and microstructure of reconstituted clay used as a subgrade soil.
Physics and Chemistry of the Earth, Parts a/b/c, 132, p.103501.
https://doi.org/10.1016/j.pce.2023.103501
26. Babu, J.S., Thimothy, R.S.W., Shantharam, Y., Arun, M. and Sivakumar, T., 2023. Enhancing the compaction properties of frictional-cohesive soil by adding the industrial ash products.
In AIP Conference Proceedings (Vol. 2782, No. 1). AIP Publishing.
https://doi.org/10.1063/5.0155191