Mathematical Modeling of Uncertainty in River Cross-Sections on Hydrodynamic Parameters of Steady Flow

Document Type : Article

Authors

Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract

In order to analyze the uncertainty of the geometric characteristics of the river on the hydrodynamic model, the uncertainty of the river cross-sections was investigated for a hypothetical example and a real river. Accordingly, taking into account 5%, 10% and 20% errors in the harvested points and ±6%, ±3% and 0 errors in the entire section, 15 scenarios were defined for generating new cross-sections. In order to investigate the effect of the selected distribution in generating random points on the output results, the random points of each section in each of the proposed scenarios were generated once by normal distribution and once again by uniform distribution. Five statistical indicators were used in river analysis mode and section by section analysis to analyze the two characteristics of the flow output, i.e. velocity and cross-sectional area. The results indicate that with the increase of the error in picking the points of each cross-section, the thickness of the 95% confidence interval, the coefficient of variation, the dispersion index and the result of dividing the actual value of each characteristic by the deviation from the criterion of that characteristic in different repetitions for both river and cross-sectional conditions increases. This is despite the fact that increasing the error of the entire section does not change much in the output of the results. By comparing the results of the two mentioned distributions, the uncertainty indices in the scenarios implemented with a uniform distribution show more dispersion.The result of dividing the thickness of the 95% confidence interval by the standard deviation of the data in each scenario in both distributions is also around a constant axis with little fluctuation in change. The results of the investigation of two types of systematic and random errors showed that the change of systematic error does not impose uncertainty on the output of the model. Also, in the case of normal error distribution, with the increase of the percentage of error, the statistical indicators change in such a way that the statistical indicators do not undergo unacceptable fluctuations up to the 20% error that was investigated in this study.

Keywords

Main Subjects


1. Fisher, H.B., 1968. Dispersion predictions in natural streams. Journal of the Sanitary Engineering Division94(5),pp.927-943. DOI:10.1061/JSEDAI.0000900
2. Blasone, R.S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A. and Zyvoloski, G.A., 2008. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources31(4), pp.630-648. DOI:10.1016/j.advwatres.2007.12.003
3. Koo, H., Iwanaga, T., Croke, B.F., Jakeman, A.J., Yang, J., Wang, H.H., Sun, X., Lü, G., Li, X., Yue, T. and Yuan, W., 2020. Position paper: Sensitivity analysis of spatially distributed environmental models-a pragmatic framework for the exploration of uncertainty sources. Environmental modelling & software134, p.104857.   DOI:10.1016/j.envsoft.2020.104857.
4. Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F., Dutta, D. and Kim, S.J.E.M., 2017. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental modelling & software90, pp.201-216. DOI:10.1016/j.envsoft.2017.01.006
5. Wu, J. and Zeng, X., 2013. Review of the uncertainty analysis of groundwater numerical simulation. Chinese Science Bulletin58, pp.3044-3052. DOI: 10.1007/s11434-013-5950-8.
6. Rojas, R., Kahunde, S., Peeters, L., Batelaan, O., Feyen,L. and Dassargues, A., 2010. Application of a multimodel   approach to account for conceptual model  and scenario uncertainties in groundwater modelling. Journal of Hydrology394(3-4), pp.416-435. DOI:10.1016/j.jhydrol.2010.09.016
7. Guo, A., Chang, J., Wang, Y., Huang, Q. and Li, Y., 2020. Uncertainty quantification and propagation in bivariate design flood estimation using a Bayesian information-theoretic approach. Journal of Hydrology584, p.12467. DOI:10.1016/ j.jhydrol.2020.124677.
8. Serinaldi, F., 2013. An uncertain journey around the tails of multivariate hydrological distributions. Water Resources Research49(10), pp.6527-6547. DOI:10.1002/wrcr.20531
9. Dung, N.V., Merz, B., Bárdossy, A. and Apel, H., 2015. Handling uncertainty in bivariate quantile estimation–An application to flood hazard analysis in the Mekong Delta. Journal of Hydrology527, pp.704-717.        DOI:10.1016/j.jhydrol.2015.05.033.
10. Pinheiro, V.B., Naghettini, M. and Palmier, L.R., 2019. Uncertainty estimation in hydrodynamic modeling using Bayesian techniques. RBRH24, p.e38. DOI:10.1590/2318-0331.241920180110 
11. Eftekharian, L.E.Y.L.A., Abrishamchi, A. and Tajrishi, M., 2005. Uncertainty Analysis of Water Levels of Sistan River and Reliability Analysis of Flood Control System. Journal of Hydraulics1(1), pp.39-54. [I‌n P‌e‌r‌s‌i‌a‌n]. DOI:10.30482/jhyd.2005.85363
12. Masoumi, F., Najjar-Ghabel, S. and Salimi, N., 2021. Automatic calibration of the two-dimensional hydrodynamic and water quality model using sequential uncertainty fitting approach. Environmental Monitoring and Assessment193, pp.1-15. DOI:10.1007/s10661-020-08831-z
13. Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D. and Efstratiadis, A., 2016. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology534, pp.478-492. DOI:10.1016/j.jhydrol.2016.01.020.
14. Apel, H., Merz, B. and Thieken, A.H., 2008. Quantification of uncertainties in flood risk assessments. International Journal of River Basin Management6(2), pp.149-162. DOI:10.1080/15715124.2008.9635344.
15. Bozzi, S., Passoni, G., Bernardara, P., Goutal, N. and Arnaud, A., 2015. Roughness and discharge uncertainty in 1D water level calculations. Environmental Modeling & Assessment20, pp.343-353.DOI:10.1007/s10666-014-9430-6
16. Papadopoulos, C.E. and Yeung, H., 2001. Uncertainty estimation and Monte Carlo simulation method. Flow Measurement and Instrumentation12(4), pp.291-298. DOI:10.1016/S0955-5986(01)00015-2.
17. Wohl, E.E., 1998. Uncertainty in flood estimates associated with roughness coefficient. Journal of Hydraulic Engineering124(2), pp.219-223. DOI:10.1061/(ASCE)07339429(1998)124:2(219).
18. Mohammadzade Vatanchi, S. and Maghrebi, M., 2022. Uncertainty Analysis of Stage-Discharge Rating Curves In Rivers. Journal of Civil and Environmental Engineering52(106), pp.157-167. I‌n P‌e‌r‌s‌i‌a‌n]   DOI:ceej.tabrizu.ac.ir/article_11115.html
19. Neal, J.C., Odoni, N.A., Trigg, M.A., Freer, J.E., Garcia-Pintado, J., Mason, D.C., Wood, M. and Bates, P.D., 2015. Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. Journal of Hydrology529, pp.169-183. DOI: 10.1016/j.jhydrol.2015.07.026.
20. Grimaldi, S., Li, Y., Walker, J.P. and Pauwels, V.R.N., 2018. Effective representation of river geometry in hydraulic flood forecast models. Water Resources Research54(2), pp.1031-1057. DOI:10.1002/2017WR021765
21. Behrooz, M., Alimohammadi, S. and Atari, J., 2014. Sensitivity analysis of hydrologic, hydraulic and economic uncertainties in design of flood control systems. Iran-Water Resources Research10(2), pp.69-81. [I‌n P‌e‌r‌s‌i‌a‌n]   https://www.iwrr.ir/article_13440.html
22. Huang KangDi, H.K., Ye Lei, Y.L., Chen Lu, C.L., Wang QuanSen, W.Q., Dai Ling, D.L., Zhou JianZhong, Z.J., Singh, V.P., Huang MuTao, H.M. and Zhang JunHong, Z.J., 2018. Risk analysis of flood control reservoir operation considering multiple uncertainties. DOI:10.1016/j.jhydrol.2018.08.040
23. Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological processes6(3), pp.279-298. DOI:10.1002/hyp.3360060305
24. Nanding, N., Rico-Ramirez, M.A., Han, D., Wu, H., Dai, Q. and Zhang, J., 2021. Uncertainty assessment of radar-raingauge merged rainfall estimates in river discharge simulations. Journal of Hydrology603, p.127093. DOI:10.1016/j.jhydrol.2021.127093
25. Riahi-Madvar, H. and Seifi, A., 2018. Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN and ANFIS. Arabian Journal of Geosciences11(21),p.688. DOI:10.1007/s12517-018-3968-6
26. Soroush, F. and Riahi Madvar, H., 2019. Uncertainty Analysis of Infiltration Parameters of WinSRFR Furrow Irrigation Simulation Model with Monte Carlo Method. Iranian Journal of Soil and Water Research50(4), pp.1007-991. [in Persian]. https://www.magiran.com/p2018514
27. Le Coz, J., Renard, B., Bonnifait, L., Branger, F. and Le Boursicaud, R., 2014. Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approach. Journal of Hydrology509, pp.573-587.  DOI:10.1016/j.jhydrol.2013.11.016.
28. Di Baldassarre, G. and Montanari, A., 2009. Uncertainty in river discharge observations: a quantitative analysis. Hydrology and Earth System Sciences13(6), pp.913-921. DOI:10.5194/hess-13-913-2009.
29. Vatanchi, S.M. and Maghrebi, M.F., 2019. Uncertainty in rating-curves due to manning roughness coefficient. Water Resources Management33(15), pp.5153-5167. DOI:10.1007/s11269-019-02421-6
30. Sadeghfam, S., Shams, H., Crookston, B.M., Babaeian Amini, A. and Daneshfaraz, R., 2023. Reliability Analysis of Water Supply Channels for Conveying Design Flow. Journal of Irrigation and Drainage Engineering149(12), p.04023028. DOI:10.1061/JIDEDH.IRENG-10179
31. Saberi Tanasvan, M., Noroozi, Z.G., Delghandi, M., Ashouri, S.N. and Dorostkar, V., 2020. Sensitivity analysis of flood parameters to roughness variation. Journal Irrigation and Water Engineering10(40),pp. 164-177. [I‌n P‌e‌r‌s‌i‌a‌n]. DOI:10.22125/iwe.2020.110081
32. Scharffenberg, W.A. and Kavvas, M.L., 2011. Uncertainty in flood wave routing in a lateral-inflow-dominated stream. Journal of Hydrologic Engineering16(2), pp.165-175. DOI:10.1061/(ASCE)HE.1943-5584.0000298.
33. Henderson, F.M., 1996. Open channel flow.
34. Bates, B.C. and Townley, L.R., 1988. Nonlinear, discrete flood event models, 3. Analysis of prediction uncertainty. Journal of Hydrology99(1-2), pp.91-101. DOI:10.1016/0022-1694(88)90080-7
35. Jacquin, A.P. and Shamseldin, A.Y., 2007. Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall‐runoff modeling. Water Resources Research43(4). DOI:10.1029/2006WR005072.
36. Dalledonne, G.L., Kopmann, R. and Brudy-Zippelius, T., 2019. Uncertainty quantification of floodplain friction in hydrodynamic models. Hydrology and Earth System Sciences23(8), pp.3373-3385.. DOI:10.5194/hess-23-3373-2019
37. Barton, G.J., Moran, E.H. and Berenbrock, C., 2004. Surveying cross sections of the Kootenai River between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada(No. 2004-1045). US Geological Survey. DOI:10.3133/ofr20041045