1. Mannion, P., Duggan, J., and Howley, E., 2016. An experimental review of reinforcement learning algorithms for adaptive traffic signal control.
Autonomic Road Transport Support Systems, pp.47-
66, doi:
10.1007/978-3-319-25808-9_4.
2. Eriksen, A. B., Lahrmann, H., Larsen, K. G., and Taankvist, J. H., 2020. Controlling signalized intersections using machine learning.
Transportation Research Procedia,
48, pp.987-997, doi:
10.1016/j.trpro.2020.08.127.
3. Mousavi, S. S., Schukat, M., and Howley, E., 2017. Traffic light control using deep policy-gradient and value-function based reinforcement learning.
IET Intelligent Transportation Systems,
11, pp.417-423. doi:
10.1049/iet-its.2017.0153.
4. Miletić, M., Ivanjko, E., Gregurić, M., and Kušić, K., 2022. A review of reinforcement learning applications in adaptive traffic signal control.
IET Intelligent Transportation Systems,
16, pp.1269-1285. doi:
10.1049/itr2.12208.
5. Chin, Y.K., Lee, L.K., Bolong, N., Yang, S.S. and Teo, K.T.K., 2011. Exploring Q-learning optimization in traffic signal timing plan management. In
Proceedings of the 3rd International Conference on Computational Intelligence, Communication Systems and Networks, Bali, Indonesia, pp.269-274, doi:
10.1109/CICSyN.2011.64.
6. Haydari, A., and Yilmaz, Y., 2020. Deep reinforcement learning for intelligent transportation systems: a survey.
IEEE Transactions on Intelligent Transportation Systems,
23(1), pp.11-32. doi:
10.1109/TITS.2020.3008612.
7. Sutton, R. S., and Barto, A. G., 2018. Introduction. In Reinforcement learning: an introduction (2nd ed., ch. 1, sec. 1.1, pp. 1-2). Cambridge, Massachusetts (London, England): The MIT Press.
8. Touhbi, S., Babram, M.A., Nguyen-Huu, T., Marilleaub, N., Hbid, M.L., Cambier, C. and Stinckwich, S., 2017. Adaptive traffic signal control exploring reward definition for reinforcement learning. In
Proceedings of the 8th International Conference on Ambient Systems, Networks and Technologies, Madeira, Portugal, pp.513-520, doi:
10.1016/j.procs.2017.05.327.
9. Zheng, G., Zang, X., Xu, N., Wei, H., Yu, Z., Gayah, V., Xu, K. and Li, Z., 2019. Diagnosing reinforcement learning for traffic signal control, arXiv preprint arXiv:
1905.04716.
10. La, P. and S. Bhatnagar, 2011. Reinforcement learning with function approximation for traffic signal control.
IEEE Transactions on Intelligent Transportation Systems,
12(2): pp.412-421. doi:
10.1109/TITS.2010.2076327.
11. Genders, W. and Razavi, S., 2016. Using a deep reinforcement learning agent for traffic signal control. arXiv preprint arXiv:
arXiv:1611.01142.
12. Wei, H., Zheng, G., Yao, H. and Li, Z., 2018. IntelliLight: a reinforcement learning approach for intelligent traffic light control. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, United Kingdom, pp.2496-2505, doi:
10.1145/3219819.3220096.
13. Zheng, Q., Xu, H., Chen, J., Zhang, D., Zhang, K., & Tang, G., 2022. Double deep Q-network with dynamic bootstrapping for real-time isolated signal control: a traffic engineering perspective.
Applied Sciences,
12(17), p.8641. doi:
10.3390/app1217864.
14. Stamatiadis, N., Tate, S., and Kirk, A., 2016. Left-turn phasing decisions based on conflict analysis.
Transportation Research Procedia,
14, 3390-3398. doi:
10.1016/j.trpro.2016.05.291.
15. Han, G., Zheng, Q., Liao, L., Tang, P., Li, Z., and Zhu, Y., 2022. Deep reinforcement learning for intersection signal control considering pedestrian behavior.
Journal of Electronics,
11(21), p.3519. doi:
10.3390/electronics11213519.
16. Afandizadeh, Sh., Tavakoli Kashani, A. & Hasanpour, Sh., 2014. A model for safety prioritization of at-grade intersections.
Rahvar Research Studies,
9(3), pp.111–138, doi:
noo.rs/PBTM2. [in Persian]
17. van Hasselt, H., Guez, A. and Silver, D. 2016., Deep reinforcement learning with double Q-learning, In
Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, doi:
10.1609/aaai.v30i1.10295.
18. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M. and de Freitas, N., 2016. Dueling network architectures for deep reinforcement learning. In
Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, pp.1995-2003, arXiv preprint arXiv:
10.48550/arXiv.1511.06581