1. Varum, H. Structural Characterization and Seismic Retrofitting of Adobe Constructions. Springer.
2
. Bilgin, H. and Hysenlliu, M. 2020. Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings,
Journal of Building Engineering,
30, p. 101248. Available at:
https://doi.org/10.1016/j.jobe.2020.101248.
3. Latifi, R. and Rouhi, R. 2020. Seismic assessment and retrofitting of existing RC structures: Seismostruct and seismobuild implementation,
Civil Engineering and Architecture,
8(2), pp. 84–93. Available at:
https://doi.org/10.13189/cea.2020.080206.
4. Shadlou, M. Ahmadi, E. and Kashani, M.M. 2020. Micromechanical modelling of mortar joints and brick-mortar interfaces in masonry Structures: A review of recent developments,
Structures,
23, pp. 831–844. Available at:
https://doi.org/10.1016/j.istruc.2019.12.017.
9. Zeng, B. Li, Y. and Cruz Noguez, C. 2021. Modeling and parameter importance investigation for simulating in-plane and out-of-plane behaviors of un-reinforced masonry walls,
Engineering Structures,
248. Available at:
https://doi.org/10.1016/j.engstruct.2021.113233.
12. Oukhlef, A. 2023. Identification of the pore size distribution of a porous medium using oscillating Newtonian fluids,
Physics Letters, Section A: General, Atomic and Solid State Physics,
460(5), p. 509. Available at:
https://doi.org/10.1016/j.physleta.2022.128615.
13. Couto, R. Bento, R. and Gomes, R.C. 2020. Seismic performance and fragility curves of historical residential buildings in Lisbon downtown affected by settlements,
Bulletin of Earthquake Engineering,
18(11), pp. 5281–5307. Available at:
https://doi.org/10.1007/s10518-020-00906-z.
14. Prosperi, A. 2023. Empirical fragility and ROC curves for masonry buildings subjected to settlements,
Journal of Building Engineering,
68(February), p. 106094. Available at:
https://doi.org/10.1016/j.jobe.2023.106094.
15. Korany, Y. 2003. Mechanics and Modeling of URM Structures, Proceedings of International Short Course on Architectural and Structural Design of Masonry, pp. 1–28.
16. Abdulla, K.F. Cunningham, L.S. and Gillie, M. 2017. Simulating masonry wall behaviour using a simplified micro-model approach,
Engineering Structures,
151, pp. 349–365. Available at:
https://doi.org/10.1016/j.engstruct.2017.08.021.
21. BENDSOE, M.P. and SIGMUND, O. 2003. Topology Optimization - Theory, Methods, and Applications.
22. Bendsøe, M.P. 1989. Optimal shape design as a material distribution problem,
Structural Optimization,
1(4), pp. 193–202. Available at:
https://doi.org/10.1007/BF01650949.
23. Bendsøe, M.P. and Sigmund, O. 1999. Material interpolation schemes in topology optimization,
Archive of Applied Mechanics,
69(9–10), pp. 635–654. Available at:
https://doi.org/10.1007/s004190050248.
24. Querin, O.M. Steven, G.P. and Xie, Y.M. 1998. Evolutionary structural optimisation (ESO) using a bidirectional algorithm,
Engineering Computations (Swansea, Wales),
15(8), pp. 1031–1048. Available at:
https://doi.org/10.1108/02644409810244129.
25. Martin Philip Bendsoe and Noboru Kikuchi 1988. Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering.
26. Yang, X.Y. 1999. Bidirectional evolutionary method for stiffness optimization,
AIAA Journal,
37, pp. 1483–1488. Available at:
https://doi.org/10.2514/3.14346.
27. Gangl, P. 2020. A multi-material topology optimization algorithm based on the topological derivative,
Computer Methods in Applied Mechanics and Engineering,
366, p. 113090. Available at:
https://doi.org/10.1016/j.cma.2020.113090.
28. Liu, P. Shi, L. and Kang, Z. 2020. Multi-material structural topology optimization considering material interfacial stress constraints,
Computer Methods in Applied Mechanics and Engineering,
363, p. 112887. Available at:
https://doi.org/10.1016/j.cma.2020.112887.
29. Huang, X. and Xie, Y.M. 2009. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials,
Computational Mechanics,
43(3), pp. 393–401. Available at:
https://doi.org/10.1007/s00466-008-0312-0.
31. Li, Y. Yuan, P.F. and Xie, Y.M. 2023. Topology optimization of structures composed of more than two materials with different tensile and compressive properties,
Composite Structures. Available at:
https://doi.org/10.1016/j.compstruct.2022.116609.
32. Sanders, E.D., Aguiló, M.A. and Paulino, G.H. 2018. Multi-material continuum topology optimization with arbitrary volume and mass constraints,
Computer Methods in Applied Mechanics and Engineering,
340, pp. 798–823. Available at:
https://doi.org/10.1016/j.cma.2018.01.032.
34. Wu, J. Sigmund, O. and Groen, J.P. 2021. Topology optimization of multi-scale structures: a review,
Structural and Multidisciplinary Optimization,
63(3), pp. 1455–1480. Available at:
https://doi.org/10.1007/s00158-021-02881-8.
35. Li, Q. Steven, G.P. and Xie, Y.M. 1999. On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization,
Structural Optimization,
18(1), pp. 67–73. Available at:
https://doi.org/10.1007/BF01210693.
36. McKeown, J.J. 1997. A note on the equivalence between maximum stiffness and maximum strength trusses,
Engineering Optimization,
29(1–4), pp. 443–456. Available at:
https://doi.org/10.1080/03052159708941007.
37. Papadrakakis, M. 1996. Advanced solution methods in topology optimization and shape sensitivity analysis,
Engineering Computations (Swansea, Wales),
13(5), pp. 57–90. Available at:
https://doi.org/10.1108/02644409610120696.
38. Eschenauer, H.A. and Olhoff, N. 2001. Topology optimization of continuum structures: A review,
Applied Mechanics Reviews,
54(4), pp. 331–390. Available at:
https://doi.org/10.1115/1.1388075.
39. Munk, D.J. Vio, G.A. and Steven, G.P. 2015. Topology and shape optimization methods using evolutionary algorithms: a review,
Structural and Multidisciplinary Optimization,
52(3), pp. 613–631. Available at:
https://doi.org/10.1007/s00158-015-1261-9.
40. Drucker, D.C. and Prager, W. 1952. Soil mechanics and plastic analysis or limit design,
Quarterly of Applied Mathematics,
10(2), pp. 157–165. Available at:
https://doi.org/10.1090/qam/48291.
42. Alfano, G. and Crisfield, M.A. 2001. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues,
International Journal for Numerical Methods in Engineering,
50(7), pp. 1701–1736. Available at:
https://doi.org/10.1002/nme.93.
43. Park, K. and Paulino, G.H. 2011. Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces,
Applied Mechanics Reviews,
64(6). Available at:
https://doi.org/10.1115/1.4023110.
45. Yang, Z.J. Li, B.B. and Wu, J.Y. 2019. X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Engineering Fracture Mechanics, 208, pp.151-170.
46. Deformation controlled tests in masonry shear wallsRaijmakers, TMJ and Vermeltfoort, A.T. 1992. Deformation controlled tests in masonry shear walls, holandés), Report B-92-1156, TNO-Bouw, Delft, Países Bajos [Preprint].
47. Rahbar, E. Permanoon, A. and Akhaveissy, A.H. 2023. Numerical evaluation of Masonry-Infill Frames: Analysis of lateral strength and failure modes on meso scale,
Structures, pp. 779–793. Available at:
https://doi.org/10.1016/j.istruc.2023.04.026.
48. Vandoren, B. 2013. Mesoscopic modelling of masonry using weak and strong discontinuities,
Computer Methods in Applied Mechanics and Engineering,
255, pp. 167–182. Available at:
https://doi.org/10.1016/j.cma.2012.11.005.
49. Paquette, J. and Bruneau, M. 2006. Pseudo-dynamic testing of unreinforced masonry building with flexible diaphragm and comparison with existing procedures,
Construction and Building Materials,
20(4), pp. 220–228. Available at:
https://doi.org/10.1016/j.conbuildmat.2005.08.025.
50. Akhaveissy, A.H. 2013. Limit state strength of unreinforced masonry structures,
Earthquake Spectra,
29(1), pp. 1–31. Available at:
https://doi.org/10.1193/1.4000097.
51. Paquette, J. and Bruneau, M. 2006. Pseudo-dynamic testing of unreinforced masonry building with flexible diaphragm and comparison with existing procedures,
Construction and Building Materials,
20(4), pp. 220–228. Available at:
https://doi.org/10.1016/j.conbuildmat.2005.08.025.
53. Gagliardo, R. 2023. Seismic analysis of failure mechanisms in adjacent interacting stone masonry buildings via rigid block modeling,
Bulletin of Earthquake Engineering [Preprint], (0123456789). Available at:
https://doi.org/10.1007/s10518-023-01659-1.