5. Bush, J. W. M., Aristoff, J. M. and Hosoi, A. 2006. An experimental investigation of the stability of the circular hydraulic jump.
Journal of Fluid Mechanics,
558, pp.33–52. doi:
https://doi.org/10.1017/S0022112006009839.
6. Passandideh-Fard, M., Teymourtash, A.R. and Khavari, M. 2009. Numerical study of circular hydraulic jump using volume of fluid method.
Journal of Fluids Engineering,
133(1), pp.114011–1140111. doi:
https://doi.org/10.1115/1.4003307.
8. Vishwanath, K.P., Dasgupta, R., Govindarajan, R. and Sreenivas, K.R. 2015. The effect of initial momentum flux on the circular hydraulic jump.
Journal of Fluids Engineering,
137(6), 061301(7 pages). doi:
https://doi.org/10.1115/1.4029725.
11. Soukhtanlou, E., Teymourtash, A.R. and Mahpeykar, M.R. 2017. Experimental relationships for determining the hydraulic characteristics of polygonal hydraulic jumps.
Modares Mechanical Engineering Journal, 18(1), pp.273–280. [In Persian]. doi:
http://mme.modares.ac.ir/article-15-199-fa.html.
12. Lakzian, E., Estiri, A., Teymourtash, A.R. and Niazi, M. 2018. Numerical investigation of circular hydraulic jump with non-Newtonian fluid with modified VOF method.
Mechanical Engineering Journal, Tabriz University,
49(1), pp.268–261. [In Persian]. doi:
https://tumechj.tabrizu.ac.ir/article_8661_1096.html?lang=fa.
13. Fazli, M. and Kabiri-Samani, A. 2019. Circular hydraulic jump in stilling basins with reverse slope bed.
Sharif Civil Engineering Journal,
2-36(1/2), pp.37–47. [In Persian]. doi:
https://doi.org/10.24200/j30.2018.50627.2334.
14. Saberi, A., Mahpeykar, M.R. and Teymourtash, A.R. 2019. Experimental measurement of radius of circular hydraulic jumps: effect of radius of convex target plate.
Flow Measurement and Instrumentation,
65, pp.274–279. doi:
https://doi.org/10.1016/j.flowmeasinst.2019.01.011.
15. Wang, Y. and Khayat, R.E. 2021. The effects of gravity and surface tension on the circular hydraulic jump for low-and high-viscosity liquids: A numerical investigation.
Physics of Fluids,
33(1), 012105. doi:
https://doi.org/10.1063/5.0032369.
16. Abdelaziz, A. and Khayat, R.E. 2022. On the non-circular hydraulic jump for an impinging inclined jet.
Physics of Fluids,
34(2), 023603. doi:
https://doi.org/10.1063/5.0079563.
17. Bhagat, R.K. and Linden, P.F. 2022. The circular hydraulic jump; the influence of downstream flow on the jump radius.
Physics of Fluids,
34(7), 072111. doi:
https://doi.org/10.1063/5.0090549.
18. Okulov, V. L., Sharifullin, B. R., Okulova, N., Kafka. J., Taboryski, R., Sørensen, J.N. and Naumov, I.V. 2022. Influence of nano-and micro-roughness on vortex generations of mixing flows in a cavity.
Physics of Fluids,
34(3), 032005. doi:
https://doi.org/10.1063/5.0083503.
19. Ranga Raju, K.G., Kitaal, M.K., Verma, M.S. and Ganeshan, V.R. 1980. Analysis of flow over baffle blocks and end sills.
Journal of Hydraulic Research,
18(3), pp.227–241. doi:
https://doi.org/10.1080/00221688009499549.
21. Abbas, A., Alwash, H. and Mahmood, A. 2018. Effect of baffle block configurations on characteristics of hydraulic jump in adverse stilling basins .
MATEC Web of Conferences,
162(1), pp.3005–3012. doi:
https://doi.org/10.1051/matecconf/201816203005.
22. Jafari, A. and Salehi Neyshabouri, S.A.A., 2016. Numerical study of effective parameters in length of submerged hydraulic jump with the baffle blocks.
Sharif Civil Engineering Journal,
33-2(2/3), pp.65-73. [In Persian]. doi:
https://www.sid.ir/paper/127934/en.
23. Esmaeeli Varaki, M., Kasi, A., Farhoudi J. and Sen, D. 2014. Hydraulic jump in a diverging channel with an adverse slope.
Iranian Journal of Science and Technology, Trans. Civil Engineering, 38(C1): pp.111–121. doi:
https://ijstc.shirazu.ac.ir/article_1848_0.html.