Evaluation and Prediction of Sedimentary Delta Dynamics in the Makoran Tidal Inlets

Document Type : Article

Authors

Faculty of Civil Engineering, Shahrood University of Technology, Iran.

10.24200/j30.2025.64746.3339

Abstract

Estuaries and tidal inlets are valuable environments for marine ecosystems and have strong socio-economic importance for coastal communities (maritime, fishing, aquaculture, tourism, recreational activities, etc.). Estuaries are connected to the sea by inlets. Various models of changes in the area of ​​the sedimentary delta of inlets with different behaviors have been identified. In this paper, an evaluation of the parameters affecting sedimentary delta changes and a prediction of changes in the sedimentary delta area of ​​mixed energy-dominated estuaries (simultaneously dominated by waves and tides) on a 20-year scale has been carried out on the Makoran coast. This assessment was carried out using machine learning models such as decision trees, support vector machines, multilayer neural networks, and satellite image analysis. Factors affecting changes in inlets have been evaluated in 5 main groups, including 34 components, 2100 data points over a period of 20 years. The data evaluated in the research were obtained by analyzing satellite images, extracting and classifying data from the European Weather Database (ECWMF) from the era-intrim data series, and data from the Chabahar and Jad field stations. The results showed that machine learning models, with the appropriate data bank and selection of appropriate features, can predict and evaluate changes in the sedimentary delta of the Makoran inlets dominated by mixed energy. Among the three models evaluated, the decision tree model provided the best performance with an error of less than 8% for these openings. Among the 34 selected components, the most influential characteristics affecting these inlets in the long term are global-scale data such as sea level rise, global warming, and barystatics. In the second order of importance of data, there are meteorological data, such as the number of rainy days per year and precipitation. The enhanced Wilmot index and the MAE and MSE indices have selected the decision tree model as the best model for predicting changes in the delta of the Makoran mixed energy inlets.

Keywords

Main Subjects


1. Fitzgerald, D.M., 1984. Interactions between the ebb-tidal delta and landward shoreline; Price Inlet, South Carolina. Journal of Sedimentary Research, 54(4), pp.1303-1318. https://doi.org/10.1306/212F85C6-2B24-11D7-8648000102C1865D
2. Elias, E.P. and van der Spek, A.J., 2006. Long-term morphodynamic evolution of Texel Inlet and its ebb-tidal delta (The Netherlands). Marine Geology, 225(1-4), pp.5-21. https://doi.org/10.1016/j.margeo.2005.09.008
3. Hein, C.J., Fallon, A.R., Rosen, P., Hoagland, P., Georgiou, I.Y., FitzGerald, D.M., Morris, M., Baker, S., Marino, G.B. and Fitzsimons, G., 2019. Shoreline dynamics along a developed river mouth barrier island: Multi-decadal cycles of erosion and event-driven mitigation. Frontiers in Earth Science, 7, p.103. https://doi.org/10.3389/feart.2019.00103
4. Maleki, S., Adjami, M. and Ahmadi, A., 2024. Numerical Modeling of Swash Zone Morphological Processes in Coarse-Grained Beaches with Xbeach Open-Source Model. Sharif Journal of Civil Engineering (SJCE), 40(3), pp.117-137. https://doi.org/10.24200/j30.2024.63280.366
5. Hayes, M.O. and FitzGerald, D.M., 2013. Origin, evolution, and classification of tidal inlets. Journal of Coastal Research, 69, pp.14-33. https://doi.org/10.2112/SI_69_3
6. Davis Jr, R.A. and Hayes, M.O., 1984. What is a wave-dominated coast?. In: Developments in sedimentology, 39, pp.313-329. Elsevier. https://doi.org/10.1016/S0070-4571(08)70152-3
7. Hayes, M., 1975. Morphology of sand accumulations in estuaries, in: L.E. Cronin (ed.), Estuarine Research. Academic Press, New York, 2, pp.3-22. https://doi.org/10.1016/B978-0-12-197502-9.50006-X
8. Georgiou, I.Y., FitzGerald, D.M. and Hanegan, K.C., 2024. Storm and tidal interactions control sediment exchange in mixed-energy coastal systems. PNAS Nexus, 3(2), p.pgae042. org/10.1093/pnasnexus/pgae042
9. Herrling, G. and Winter, C., 2018. Tidal inlet sediment bypassing at mixed-energy barrier islands. Coastal Engineering, 140, pp.342-354. org/10.1016/j.coastaleng.2018.08.008
10. Karunarathna, H., Reeve, D. and Spivack, M., 2008. Long-term morphodynamic evolution of estuaries: an inverse problem. Estuarine, Coastal and Shelf Science, 77(3), pp.385-395. https://doi.org/10.1016/j.ecss.2007.09.029
11. Wang, Z.B., Van Maren, D.S., Ding, P.X., Yang, S.L., Van Prooijen, B.C., De Vet, P.L.M., Winterwerp, J.C., De Vriend, H.J., Stive, M.J.F., and He, Q., 2015. Human impacts on morphodynamic thresholds in estuarine systems. Continental Shelf Research, 111, pp.174-183. https://doi.org/10.1016/j.csr.2015.08.009
12. Dam, G., Van der Wegen, M., Labeur, R.J., and Roelvink, D., 2016. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary. Geophysical Research Letters, 43(8), pp.3839-3847. https://doi.org/10.1002/2015GL066725
13. Luan HuaLong, L.H., Ding PingXing, D.P., Wang ZhengBing, W.Z., and Ge JianZhong, G.J., 2017. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: controls on estuarine evolution and future trends.Geomorphologyhttps://doi.org/10.1016/j.geomorph.2017.04.016
14. Xie, D., Gao, S., Wang, Z.B., Pan, C., Wu, X., and Wang, Q., 2017. Morphodynamic modeling of a large inside sandbar and its dextral morphology in a convergent estuary: Qiantang Estuary, China.Journal of Geophysical Research: Earth Surface, 122(8), pp.1553-1572. https://doi.org/10.1002/2017JF004293
15. Yuan, B., Sun, J., Lin, B. and Zhang, F., 2020. Long-term morphodynamics of a large estuary subject to decreasing sediment supply and SLR. Global and Planetary Change, 191, p.103. org/10.1016/j.gloplacha.2020.103212
16. Wang, Z.B., Hoekstra, P., Burchard, H., Ridderinkhof, H., De Swart, H.E. and Stive, M.J.F., 2012. Morphodynamics of the Wadden Sea and its barrier island system. Ocean & Coastal Management, 68, pp.39 https://doi.org/10.1016/j.ocecoaman.2011.12.022
17. Hibma, A., Stive, M.J.F. and Wang, Z.B., 2004. Estuarine morphodynamics. Coastal Engineering,  765-778. doi.org/10.1016/j.coastaleng.2004.07.008
18. Fagherazzi, S., Edmonds, D.A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., Jerolmack, D.J., Mariotti, G., Rowland, J.C. and Slingerland, R.L., 2015. Dynamics of river mouth deposits. Reviews of Geophysics, 53(3), pp.642-672. https://doi.org/10.1002/2014RG000451
19. Roscher, R., Bohn, B., Duarte, M.F. and Garcke, J., 2020. Explainable machine learning for scientific insights and discoveries. IEEE Access, 8, pp.42200-42216. https://doi.org/10.1109/ACCESS.2020.2976199
20. Zhang, X.D., 2020. A matrix algebra approach to artificial intelligence. [book]
21. Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I. and Heynen, M, 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3-4), pp.239-258. https://doi.org/10.1016/j.isprsjprs.2003.10.02
22. Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), pp.2-16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
23. Aiazzi, B., Alparone, L., Baronti, S. and Garzelli, A., 2002. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing, 40(10), pp.2300-2312. https://doi.org/10.1109/TGRS.2002.803623
24. Liu, J., Li, J., Li, W. and Wu, J., 2016. Rethinking big data: A review on the data quality and usage issues. ISPRS Journal of Photogrammetry and Remote Sensing, 115, pp.134-142. https://doi.org/10.1016/j.isprsjprs.2015.11.06
25. LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.436-44. https://doi.org/10.1038/nature14539
26. Park, D.H., Kim, H.K., Choi, I.Y. and Kim, J.K., 2012. A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), pp.10059-10072. https://doi.org/10.1016/j.eswa.2012.02.038
27. Peponi, A., Morgado, P. and Trindade, J., 2019. Combining artificial neural networks and GIS fundamentals for coastal erosion prediction modeling. Sustainability, 11(4), p.975. https://doi.org/10.3390/su11040975
28. Abouhalima, M., das Neves, L., Taveira-Pinto, F. and Rosa-Santos, P., 2024. Machine Learning in Coastal Engineering: Applications, Challenges, and Perspectives. Journal of Marine Science and Engineering, 12(4), p.638. https://doi.org/10.3390/jmse12040638
29. Juan, N.P. and Valdecantos, V.N., 2022. Review of the application of Artificial Neural Networks in ocean engineering. Ocean Engineering, 259, p.111947. https://doi.org/10.1016/j.oceaneng.2022.111947
30. Kumar, L., Afzal, M.S. and Afzal, M.M., 2020. Mapping shoreline change using machine learning: a case study from the eastern Indian coast. Acta Geophysica68(4), pp.1127-1143. https://doi.org/10.1007/s11600-020-00454-9
31. van Maanen, B., Coco, G., Bryan, K.R. and Ruessink, B.G., 2010. The use of artificial neural networks to analyze and predict alongshore sediment transport. Nonlinear Processes in Geophysics, 17(5), pp.395-404. https://doi.org/10.5194
32. Kabiri-Samani, A.R., Aghaee-Tarazjani, J., Borghei, S.M. and Jeng, D.S., 2011. Application of neural networks and fuzzy logic models to long-shore sediment transport. Applied Soft Computing11(2), pp.2880-2887. https://doi.org/10.1016/j.asoc.2010.11.021
33. Yoon, H.D., Cox, D.T. and Kim, M., 2013. Prediction of time-dependent sediment suspension in the surf zone using artificial neural network. Coastal engineering71, pp.78-86. https://doi.org/10.1016/j.coastaleng.2012.08.005
34. Wang, Y., Chen, J., Cai, H., Yu, Q. and Zhou, Z., 2021. Predicting water turbidity in a macro-tidal coastal bay using machine learning approaches. Estuarine, Coastal and Shelf Science252, p.107276. https://doi.org/10.1016/j.ecss.2021.107276
35. Salcedo, F., Harter, C. and Fenical, S., 2019, September. Predicting Long-Term Coastal Conditions in San Francisco Bay and Other Estuaries with the Use of Supervised Neural Networks. In 15th Triennial International Conference (pp. 101-111). Reston, VA: American Society of Civil Engineers. https://ascelibrary.org/doi/abs/10.1061/9780784482629.010
36. Guillou, N. and Chapalain, G., 2021. Machine learning methods applied to sea level predictions in the upper part of a tidal estuary. Oceanologia63(4), pp.531-544. https://doi.org/10.1016/j.oceano.2021.07.003
37. Múnera, S., Osorio, A.F. and Velásquez, J.D., 2014. Data-based methods and algorithms for the analysis of sandbar behavior with exogenous variables. Computers & geosciences72, pp.134-146. https://doi.org/10.1016/j.cageo.2014.07.009
38. Fannassi, Y., Ennouali, Z., Hakkou, M., Benmohammadi, A., Al-Mutiry, M., Elbisy, M.S. and Masria, A., 2023. Prediction of coastal vulnerability with machine learning techniques, Mediterranean coast of Tangier-Tetouan, Morocco. Estuarine, Coastal and Shelf Science291, p.108422. https://doi.org/10.1016/j.ecss.2023.108422
39. Goldstein, E.B., Coco, G. and Plant, N.G., 2019. A review of machine learning applications to coastal sediment transport and morphodynamics. Earth-science reviews194, pp.97-108. https://doi.org/10.1016/j.earscirev.2019.04.022
40. Rajasekaran, S., Gayathri, S. and Lee, T.L., 2008. Support vector regression methodology for storm surge predictions. Ocean Engineering35(16), pp.1578-1587. https://doi.org/10.1016/j.oceaneng.2008.08.004
41. Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk, A. and Ranasinghe, R., 2018. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. International Journal of Remote Sensing39(13), pp.4431-4450. https://doi.org/10.1080/01431161.2017.1421796
42. James, S.C., Zhang, Y. and O'Donncha, F., 2018. A machine learning framework to forecast wave conditions. Coastal Engineering137, pp.1-10. https://doi.org/10.1016/j.coastaleng.2018.03.004
43. Beuzen, T. and Splinter, K., 2020. Machine learning and coastal processes. In Sandy beach morphodynamics (pp. 689-710). Elsevier. https://doi.org/10.1016/B978-0-08-102927-5.00028-X
44. Iran Ports and Maritime Organization, 2013. Monitoring and simulation studies of the coasts of Hormozgan province, report on sedimentation studies. [in Persian].
45. Iran Ports and Maritime Organization, 2016. ICZM inspection plan of the coasts of Hormozgan province, sedimentary reports.
46. Ghanavati, E., Shah-Hosseini, M. and Marriner, N., 2021. Analysis of the Makoran coastline of Iran’s vulnerability to global sea-level rise. Journal of Marine Science and Engineering, 9(8), p.891. Available at: https://doi.org/10.3390/jmse9080891
47. Dadashzadeh, Z., Shayan, S., et al., 2019. Analysis of coastal morphodynamics with the aim of determining the boundary of sediment cells (case study: Hormozgan province). Quantitative Geomorphology Research, 9(2), pp.20. https://doi.org/10.22113/jmst.2018.126521.2144
48. Zakeri, E., Jabari, A., Adjami, M. and Rezaei, A., 2019. Effects of environmental parameters on the morphology of the beach cu sps of Roddic Port. Sharif Journal of Civil Engineering (SJCE), 35(2), pp.35-50. https://doi.org/10.24200/j30.2018.2261.2152