# بررسی مقایسه‌ای شرایط ماتریس سختی در روش‌های آنالیز اجزای محدود با المان ویژه، اجزای محدود توسعه یافته و روش آنالیز ایزوژئومتریک در مساله شکست

نوع مقاله: پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه شهید چمران

2 دانشگاه شهید چمران اهواز

چکیده

ماتریس سختی یکی از ویژگی‌های ذاتی هر روش عددی می‌باشد. شرایط این ماتریس تأثیر بسزایی در حجم محاسبات و پایداری روش حل می‌گذارد. در مطالعه‌ی حاضر به لحاظ تئوری مقایسه‌ای براساس هندسه و ویژگی‌های ریاضی ماتریس سختی حاصل از روش‌های‌ عددی اجزای محدود استاندارد، اجزای محدود توسعه یافته و روش آنالیز ایزوژئومتریک، در حل مساله ورق حاوی ترک صورت گرفته ‌است. به منظور مدل‌سازی ترک در روش اجزای محدود استاندارد، المان ویژه تکین هشت گرهی اجزای محدود به کار گرفته شده است. از طرفی در روش اجزای محدود توسعه یافته از اصول غنی‌سازی توابع درون‌یاب اجزای محدود و کاربرد روش ریاضی پیکره‌بندی واحد اجزای محدود استفاده می‌شود. به علاوه در روش آنالیز ایزوژئومتریک از تکرار نقاط کنترلی در یک موقعیت به منظور ایجاد ضمنی ناپیوستگی و ایجاد تکینگی در ماتریس سختی، بهره گرفته شده است و از توابع پایه مرتبه 3 در تقریب هندسه و حل استفاده می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

### A comparative investigation on stiffness matrix conditions for FEA, XFEA, and IGA in fracture problem

نویسندگان [English]

• Zahra Hatampour 2
• Masoud Oulapour 2
• Seyed Enayatolah Alavi 2
1 Shahid Chamran University of Ahvaz
2 Shahid Chamran University of Ahvaz
چکیده [English]

Fracture mechanics is a vast and growing field of mechanics concerned with the study of crack propagation in materials. In order to study the behavior of the system with varying properties˓ using analytical solutions, denote exact results. Unfortunately, very few practical systems lead to analytical solutions thereupon using numerical approach have been considered to find the close answer to practical results. The stiffness matrix is an inherent feature of a numerical method. Its condition has a great influence on numerical calculation and the stability of the solution. Since the application of numerical methods such as the standard finite element method, the extended finite element method and the isogeometric analysis approach in the problems of fracture mechanics has been approved, in this contribution, a theoretical comparison between stiffness matrices derived from these numerical methods for a cracked body, has been conducted. For this purpose, a computer code is prepared to make a comparison based on stiffness matrix geometry and mathematical properties such as matrix sparsity, stiffness index, bandwidth, number of independent rows and columns, zero and non-zero elements, symmetric/ nonsymmetric and hermitian/ nonhermitian stiffness matrix are investigated. In order to simulate crack, the finite element method uses a special 8-node singular element. And in case of extended finite element, the principles of enrichment of the interpolation functions of finite element and the application of the partition of unity method considered to apply discontinuities implicitly into the domain. Also in the isogeometric analysis approach repetition of two different control points between two patches can create a discontinuity and also demonstrates a singularity in the stiffness matrix. In addition, the NURBS of order 3 is utilized as the basis functions to approximate the geometry and the solution. By comparing the stress distribution in all three methods, the accuracy of the calculations and the smoothness of the results are investigated. And it is found that stiffness matrix obtained from the isogeometric analysis method is non-diagonal in the fracture problems. Extended finite element stiffness matrix in comparison with other methods has a better condition.

کلیدواژه‌ها [English]

• stiffness matrix
• Finite Element Method
• Extended finite element method
• Isogeometric analysis
• Partition of unity