\شماره٪٪۱
Kaufmann, J., Winnefeld, F.
and Hesselbarth, D., 2004. Effect of the addition of
ultrafine cement and short fiber reinforcement on shrinkage, rheological and
mechanical properties of Portland cement pastes. {\it Cement and Concrete
Composites, 26(5)}, pp.541-549.
https://doi.org/10.1016/S0958-9465(03)00070-2.
\شماره٪٪۲
Liu, J.K., and Peng, L.Y., 2009. Experimental study on the unconfined
compression of a thawing soil.
{\it Cold Regions Science and Technology, 58(1-2)},
pp.92-96.
https://doi.org/10.1016/j.coldregions.2009.03.008.
\شماره٪٪۳
Lee, K.L., Adams, B.D. and Vagneron, J.M.J., 1973. Reinforced earth
retaining walls. {\it Journal of the Soil Mechanics and Foundations Division,
99(10)}, pp.745-764.
https://doi.org/10.1061/JSFEAQ.0001931.
\شماره٪٪۴
Gray, D.H. and Ohashi, H., 1983. Mechanics of fiber reinforcement in sand.
{\it Journal of Geotechnical Engineering, 109(3)}, pp.335-353.
https://doi.org/10.1061/(ASCE)0733-410(1983)109:3(335).
\شماره٪٪۵
Freitag, D.R., 1986. Soil randomly reinforced with fibers. {\it Journal of
Geotechnical Engineering, 112(8)}, pp.823-826.
https://doi.org/10.1061/(ASCE)0733-410(1986)112:8(823).
\شماره٪٪۶
Michalowski, R.L. and
Cermak, J.,
2002. Strength anisotropy of fiber-reinforced sand. {\it Computers and
Geotechnics, 29(4)}, pp.279-299.
https://doi.org/10.1016/S0266-352X(01)00032-5.
\شماره٪٪۷
Yetimoglu, T. and Salbas, O., 2003. A study on shear strength of sands
reinforced with randomly distributed discrete fibers. {\it Geotextiles and
Geomembranes,
21(2)}, pp.103-110. https://doi.org/10.1016/S0266-1144(03)00003-7.
\شماره٪٪۸
Yetimoglu, T., Inanir, M. and Inanir, O.E., 2005. A study on bearing
capacity of randomly distributed fiber-reinforced sand fills overlying soft
clay. {\it Geotextiles and Geomembranes, 23(2)}, pp.174-183.
https://doi.org/10.1016/j.geotexmem.2004.09.004.
\شماره٪٪۹
Ibraim, E., Fourmont, S., 2007. Behaviour of sand reinforced with fibres,
In: Ling, H.I., Callisto, L., Leshchinsky, D., Koseki, {\it J. (eds) Soil
Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid
Mechanics and
Its Applications, 146}, pp.807-818. Springer, Dordrecht, Netherland.
https://doi.org/10.1007/978-1-4020-6146-2-60.
\شماره٪٪۱۰
Viswanadham, B.V.S., Phanikumar, B.R. and Mukherjee, R.V. 2009.
Swelling behaviour of a geofiber-reinforced expansive soil.
{\it Geotextiles and
Geomembranes, 27(1)}, pp.73-76.
https://doi.org/10.1016/j.geotexmem.2008.06.002.
\شماره٪٪۱۱
Dupas, J.M., Pecker, A., 1979. Static and dynamic properties of
sand-cement. {\it Journal of Geotechnical Engineering, 105(3)}, pp.419-436.
https://doi.org/10.1061/AJGEB6.0000778.
\شماره٪٪۱۲
Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S., 1981. {\it Cemented sands
under static loading, Journal of the Geotechnical Engineering
Division, 107(6)},
pp.799-817.
https://doi.org/10.1061/AJGEB6.0001152.
\شماره٪٪۱۳
Morel, J.C. and Gourc, J.P., 1997. Mechanical behavior of sand reinforced
with mesh elements. {\it Geosynthetics International, 4(5)}, pp.481-508.
https://doi.org/10.1680/gein.4.0103.
\شماره٪٪۱۴
Heineck, K.S., Coop, M.R. and Consoli, N.C., 2005. Effect of
microreinforcement of soils from very small to large shear strains.
{\it Journal of
Geotechnical and Geoenvironmental Engineering, 131(8)}, pp.1024-1033.
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1024).
\شماره٪٪۱۵
Park, S.S., 2009. Effect of fiber reinforcement and distribution on
unconfined compressive strength of fiber-reinforced cemented sand.
{\it Geotextiles
and Geomembranes, 27(2)}, pp.162-166.
https://doi.org/10.1016/j.geotexmem.2008.09.001.
\شماره٪٪۱۶
Consoli, N.C., Vendruscolo, M.A., Fonini, A. and Dalla Rosa, F., 2009.
Fiber reinforcement effects on sand considering a wide cementation range.
{\it Geotextiles and Geomembranes, 27(3)}, pp.196-203.
https://doi.org/10.1016/j.geotexmem.2008.11.005.
\شماره٪٪۱۷
Taber, S., 1929. Frost Heaving. {\it The Journal of Geology, 37(5)}, pp.
428-461. https://doi.org/10.1086/623637.
\شماره٪٪۱۸
Penner, E., 1961. Alternate freezing and thawing not a requirement for
frost heaving in soils.
{\it Canadaian Journal of Soil Science, 41(2)}, pp.160-163.
https://doi.org/10.4141/cjss61-021.
\شماره٪٪۱۹
Parameswaran, V.R., 1985. Effect of alternating stress on the creep of
frozen soils. {\it Mechanics of Materials, North-Holland, 4(2)}, pp.109-119.
https://doi.org/10.1016/0167-6636(85)90010-9.
\شماره٪٪۲۰
Simonsen, E., and Isacsson, U. 1999. Thaw weakening of pavement
structures
in cold regions. {\it Cold Regions Science and Technology, 29(2)}, pp.135-151.
https://doi.org/10.1016/S0165-232X(99)00020-8.
\شماره٪٪۲۱
Qi, J., Ma, W., and Song, C., 2008. Influence of freeze-thaw on
engineering properties of a silty soil.
{\it Cold Regions Science and Technology,
53(3)}, pp.397-404.
https://doi.org/10.1016/j.coldregions.2007.05.010.
\شماره٪٪۲۲
Altun, S., Sezer, A., and Erol, A., 2009. The Effects of additives and
curing conditions on the mechanical behavior of a silty soil. {\it
Cold Regions
Science and Technology, 56(2-3)}, pp.135-140.
https://doi.org/10.1016/j.coldregions.2008.11.007.
\شماره٪٪۲۳
Christ, M., Park, J.B., 2010. Laboratory determination of strength
properties of frozen rubber-sand mixtures.
{\it Cold Regions Science and Technology,
60(2)}, pp.169-175.
https://doi.org/10.1016/j.coldregions.2009.08.013.
\شماره٪٪۲۴
Liu, J. K., and Peng, L.Y., 2009. Experimental study on the unconfined
compression of a thawing soil.
{\it Cold Regions Science and Technology, 58(1-2)},
pp.92-96.
https://doi.org/10.1016/j.coldregions.2009.03.008.
\شماره٪٪۲۵
Li, F., Chen, D., Lu, Y., Zhang, H. and Li, S., 2022. Influence of mixed
fibers on fly ash based geopolymer resistance against freeze-thaw cycles.
{\it Journal of Non-Crystalline Solids, 584}.
https://doi.org/10.1016/j.jnoncrysol.2022.121517.
\شماره٪٪۲۶
Tao, Z., Zhang, Y., Chen, X., Gu, X., 2022. Effects of freeze-thaw cycles
on the mechanical properties of cement-fiber composite treated silty clay.
{\it Construction and Building Materials, 316}.
https://doi.org/10.1016/j.conbuildmat.2021.125867.
\شماره٪٪۲۷
Xiao, X., Li, J., Cai, D., Lou, L., Shi Y. and Xiao, F., 2022. Evolution
evaluation of high-speed railway asphalt concrete waterproofing layer during
laboratory freeze-thaw cycles.
{\it Construction and Building Materials, 324}.
https://doi.org/10.1016/j.conbuildmat.2021.126258