\شماره٪٪۱
Rattley, M.J., Lehane, B.M., Consoli, N.C. and Richards, D.J.,
2007. Uplift of shallow foundations with cement-stabilised backfill.
{\it Proceedings of the ICE-Ground Improvement}, {\it 161}(2), pp.
103-110. doi.org/10.1680/grim.2008.161.2.103.
\شماره٪٪۲
Yadav, A.K., Gaurav, K., Kishor, R. and Suman, S.K., 2017.
Stabilization of alluvial soil for subgrade using rice husk ash,
sugarcane bagasse ash and cow dung ash for rural roads. {\it International
Journal of Pavement Research and Technology}, {\it 10}(3), pp.
254-261. doi.org/10.1016/j.ijprt.2017.02.001.
\شماره٪٪۳
Chu, C., Deng, Y., Zhou, A., Feng, Q., Ye, H. and Zha, F.,
2018. Backfilling performance of mixtures of dredged river sediment
and iron tailing slag stabilized by calcium carbide slag in mine
goaf. {\it Construction and Building Materials},
{\it 189}, pp.849-856.6doi.org/
10.1016/j.conbuildmat.2018.09.049.
\شماره٪٪۴
Pastor, J.L., Ortega, J.M., Flor, M., L\'{o}pez,
M.P., Sanchez,
I. and Climent, M.A., 2016. Microstructure and durability of fly
ash cement grouts for micropiles. {\it Construction and Building Materials},
{\it 117}, pp.47-57. doi.org/10.1016/j.conbuildmat.2016.04.154.
\شماره٪٪۵
Farouk, A. and Shahien, M.M., 2013. Ground improvement using
soil-cement columns: Experimental investigation. {\it Alexandria Engineering
Journal}, {\it 52}(4), pp.733-740. doi.org/10.1016/j.aej.2013.08.009.
\شماره٪٪۶
Consoli, N.C., Dalla Rosa Johann, A., Gauer, E.A., Dos Santos,
V.R., Moretto, R.L. and Corte, M.B., 2012. Key parameters for
tensile and compressive strength of silt-lime mixtures. {\it Geotechnique
Letters}, {\it 2}(3), pp.81-85. doi: 10.1680/geolett.12.00014.
doi.org/10.1680/geolett.12.00014.
\شماره٪٪۷
Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S., 1981.
Cemented sands under static loading. {\it Journal of Geotechnical
and Geoenvironmental Engineering}, {\it 107}(ASCE 16319 Proceeding).
doi.org/10.1061/AJGEB6.0001152.
\شماره٪٪۸
Kenai, S., Bahar, R. and Benazzoug, M., 2006. Experimental
analysis of the effect of some compaction methods on mechanical
properties and durability of cement stabilized soil. {\it Journal
of Materials
Science}, {\it 41}(21), pp.6956-6964.doi.org/10.1007/s10853-006-0226-1.
\شماره٪٪۹
Consoli, N.C., Cruz, R.C., Floss, M.F. and Festugato, L., 2009a.
Parameters controlling tensile and compressive strength of artificially
cemented sand. {\it Journal of Geotechnical and Geoenviron}. {\it Engineering},
{\it 136}(5), pp.759-763. doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
\شماره٪٪۱۰
Cardoso, R., Ribeiro, D. and N\'{e}ri,
R. 2017. Bonding effect
on the evolution with curing time of compressive and tensile
strength of sand-cement mixtures. {\it Soils and Foundations}, {\it 57}(4),
pp.655-668. doi.org/10.1016/j.sandf.2017.04.006.
\شماره٪٪۱۱
Consoli, N.C. and Tomasi, L.F., 2017. The impact of dry unit
weight and cement content on the durability of sand-cement blends.
{\it Proceedings of the Institution of Civil Engineers-Ground Improvement},
{\it 171}(2), pp.96-102. doi.org/10.1680/jgrim.17.00034.
\شماره٪٪۱۲
Amini, Y. and Hamidi, A., 2014. Triaxial shear behavior of
a cement-treated sand-gravel mixture. {\it Journal of Rock Mechanics
and Geotechnical Engineering}, {\it 6}(5), pp.455-465. Available at:
doi.org/10.1016/j.jrmge.2014.07.006.
\شماره٪٪۱۳
MolaAbasi, H., Saberian, M., Semsani, S.N., Li, J. and Khajeh,
A., 2018. Triaxial behaviour of zeolite-cemented sand. {\it Proceedings
of the Institution of Civil Engineers-Ground Improvement}, pp.
1-11. doi.org/10.1680/jgrim.18.00009.
\شماره٪٪۱۴
MolaAbasi, H. and Shooshpasha, I., 2017. Polynomial Models
Controlling Strength of Zeolite-Cement Sand Mixtures. {\it Scientia
Iranica}, {\it 24}(2), p.526. doi.org/ 10.24200/SCI.2017.2415.
\شماره٪٪۱۵
Ng, K.S., 2018. Tensile behavior of fiber reinforced cemented
soil: A short review. {\it In: AIP Conference Proceedings}. AIP Publishing,
p.20001.
doi.org/ 10.1063/1.5062627.
\شماره٪٪۱۶
Consoli, N.C., Prietto, P.D.M. and Ulbrich, L.A., 1998. Influence
of Fiber and Cement Addition on Behaviour of Sandy Soil. {\it Journal
of Geotechnical and Geoenvironmental Engineering}, {\it 124}(1211-1214),
pp.197-210. doi.org/10.1061/(ASCE)1090-0241(1998)124.
\شماره٪٪۱۷
Tang, C.S., Wang, D.Y., Cui, Y.J., Shi, B. and Li, J.,
2016. Tensile strength of fiber-reinforced soil. {\it Journal of Materials
in Civil Engineering}, {\it 28}(7), p.4016031.
doi.org/10.1061/(ASCE)MT.1943-5533.0001546.
\شماره٪٪۱۸
Roshan, K., Choobbasti, A.J. and Kutanaei, S.S., 2020. Evaluation
of the impact of fiber reinforcement on the durability of lignosulfonate
stabilized clayey sand under wet-dry condition. {\it Transportation
Geotechnics}, p.100359. doi.org/10.1016/j.trgeo.2020.100359.
\شماره٪٪۱۹
Hooresfand, M. and Hamidi, A., 2011. Influence of fiber reinforcement
on triaxial. pp.1-7.
doi.org/ 10.1016/j.geotexmem.2012.10.005.
\شماره٪٪۲۰
Hamidi, A. and Hooresfand, M., 2013. Effect of fiber reinforcement
on triaxial shear behavior of cement treated sand. {\it Geotextiles
and Geomembranes}, {\it 36}, pp.1-9. doi.org/10.1016/j.geotexmem.2012.10.005.
\شماره٪٪۲۱
Kutanaei, S.S. and Choobbasti, A.J., 2015. Triaxial behavior
of fiber-reinforced cemented sand. {\it Journal of Adhesion Science
and Technology},
{\it 30}(6), pp.579-593. doi.org/10.1080/01694243.2015.1110073.
\شماره٪٪۲۲
Abbasi, S.A., Khalil, A.B. and Arslan, M., 2020. Extensive
use of face masks during COVID-19 pandemic: (Micro-) plastic pollution
and potential health concerns in the Arabian Peninsula. {\it Saudi
Journal of Biological Sciences}, {\it 27}(12), pp. 3181--3186. doi.org/
10.1016/j.sjbs.2020.09.054.
\شماره٪٪۲۳
Boroujeni, M., Saberian, M. and Li, J., 2021. Environmental
impacts of COVID-19 on Victoria, Australia, witnessed two waves
of Coronavirus. {\it Environmental Science and Pollution Research},
{\it 28}(11), pp.14182-14191. doi.org/ 10.1007/s11356-021-12556-y.
\شماره٪٪۲۴
Rehman, Z. and Khalid, U., 2021. Reuse of COVID-19 face mask
for the amelioration of mechanical properties of fat clay: A
novel solution to an emerging waste problem. {\it Science of The Total
Environment}, {\it 794}, p.148746. doi.org/ 10.1016/j.scitotenv.2021.148746.
\شماره٪٪۲۵
Kilmartin-Lynch, S., Saberian, M., Li, J., Roychand, R. and
Zhang, G., 2021. Preliminary evaluation of the feasibility of
using polypropylene fibres from COVID-19 single-use face masks
to improve the mechanical properties of concrete. {\it Journal of
Cleaner Production},
{\it 296}, p.126460. doi.org/ 10.1016/j.jclepro.2021.126460.
\شماره٪٪۲۶
Cui, J., Qi, M., Zhang, Z., Gao, S., Xu, N., Wang, X., Li, N. and Chen, G.
2023. Disposal and resource utilization of
waste masks: A review. {\it Environmental Science and Pollution Research},
pp.1-22. doi.org/10.1007/s11356-023-25353-6.
\شماره٪٪۲۷
Goli, A. and Sadeghi, P., 2023. Evaluation on the use of COVID-19
single-use face masks to improve the properties of hot mix asphalt.
{\it Road Materials and Pavement Design}, {\it 24}(5), pp.1371-1388.
doi.org/10.1080/14680629.2022.2072376.
\شماره٪٪۲۸
Samadzadeh, A., Ghadr, S., Bahadori, H. and Kheiri, G., 2022.
Experimental study on the cyclic behavior of silty sands reinforced
by disposal of shredded facemask. {\it Transportation Geotechnics},
{\it 37}, p.100871. doi.org/10.1016/j.trgeo.2022.100871.
\شماره٪٪۲۹
ASTM D2487., 2011. Standard practice for classification of
soils for engineering purposes (Unified Soil Classification System).
doi.org/ 10.1520/D2487-17.
\شماره٪٪۳۰
ASTM D854., 2005. Standard test methods for specific gravity
of soil solids by water pycnometer. ASTM International, West
Conshohocken, PA, 2005, DOI: 10.1520/D0854-05.
doi.org/10.1520/D0854-23.
\شماره٪٪۳۱
ASTM D4254., A. 2006. Standard test methods for minimum index
density and unit weight of soils and calculation of relative
density. doi.org/10.1520/D4254-16.
\شماره٪٪۳۲
ASTM, D4253., 2000. Standard test methods for maximum index
density and unit weight of soils using a vibratory table. doi.org/
10.1520/D4253-16E01.
\شماره٪٪۳۳
Khebizi, W., Della, N., Denine, S., Canou, J. and Dupla,
J.C., 2019. Undrained behaviour of polypropylene fibre reinforced
sandy soil under monotonic loading. {\it Geomechanics and Geoengineering},
{\it 14}(1), pp.30-40. doi.org/ 10.1080/17486025.2018.1508855.
\شماره٪٪۳۴
Consoli, N.C., Viana da Fonseca, A., Cruz, R.C. and Heineck,
K.S., 2009c. Fundamental parameters for the stiffness and strength
control of artificially cemented sand. {\it Journal of Geotechnical
and Geoenvironmental Engineering}, {\it 135}(9), pp.1347-1353.
doi.org/ 10.1061/(ASCE)GT.1943-5606.0000008.
\شماره٪٪۳۵
Benessalah, I., Sadek, M., Villard, P. and Arab, A., 2020.
Undrained triaxial compression tests on three-dimensional reinforced
sand: Effect of the geocell height. {\it European Journal of Environmental
and Civil Engineering}, pp.1-12. doi.org/ 10.1080/19648189.2020.1728581.
\شماره٪٪۳۶
MolaAbasi, H., 2016. Laboratory investigation on mechanical
behavior of babolsar sand stabilized with cement and Zeolite.
Babol Noshivani University.
\شماره٪٪۳۷
Ismael, N.F., 2000. Influence of artificial cementation on
the properties of Kuwaiti sands. {\it Kuwait Journal of Science and
Engineering}, {\it 27}(1), pp.59-76.
doi.org/10.1061/(ASCE)1090-0241(1998)124:10(997).
\شماره٪٪۳۸
Head, K.H. and Epps, R., 1986. Manual of soil laboratory testing.
Pentech Press London.
\شماره٪٪۳۹
Consoli, N.C. and Foppa, D., 2014. Porosity/cement ratio controlling
initial bulk modulus and incremental yield stress of an artificially
cemented soil cured under stress.
{\it G\'{e}otech Lett}. {\it 4}, pp.
22-26.doi.org/10.1680/geolett.13.00081.
\شماره٪٪۴۰
MolaAbasi, H., Saberian, M. and Li, J., 2019. Prediction of
compressive and tensile strengths of zeolite-cemented sand using
porosity and composition. {\it Construction and Building Materials},
{\it 202}, pp.784-795. doi.org/10.1016/j.conbuildmat.2019.01.065.
\شماره٪٪۴۱
Consoli, N.C., Festugato, L. and Heineck, K.S., 2009. Strain-hardening
behaviour of fibre-reinforced sand in view of filament geometry.
{\it Geosynthetics International}, {\it 16}(2), pp.109-115.
doi.org/10.1016/j.jrmge.2014.07.006.
\شماره٪٪۴۲
EsfandyariPour, A., Lajevardi, S.H. and MolaAbasi, H., 2024.
Preposition of a Key Parameter to Estimate the Compressive Strength
of the Sand stabilized with cement-zeolite and Reinforced by
Polypropylene Fibers. {\it AUT Journal of Civil Engineering},
doi.org/10.22060/AJCE.2024.18576.5685.
\شماره٪٪۴۳
Ladd, R.S., 1977. Specimen preparation and cyclic stability
of sands. {\it Journal of the Geotechnical Engineering Division}, {\it 103}(6),
pp.535-547.
\شماره٪٪۴۴
ASTM, A., 1995. D3967. {\it Standard Test Method for Splitting
Tensile Strength of Intact Rock Core Specimens}. Annual Book of
ASTM Standards, American Society for Testing and Materials, West
Conshohocken, PA. doi.org/ 10.1520/D3967-16.
\شماره٪٪۴۵
Consoli, N.C., da Fonseca, A.V., Cruz, R.C. and Silva, S.R.
2011. Voids/cement ratio controlling tensile strength of cement-treated
soils. {\it Journal of Geotechnical and Geoenvironmental Engineering},
{\it 137}(11), pp.1126-1131. doi.org/10.1061/(ASCE)GT.1943-5606.0000524.
\شماره٪٪۴۶
Tran, K.Q., Satomi, T. and Takahashi, H., 2018. Improvement
of mechanical behavior of cemented soil reinforced with waste
cornsilk fibers. {\it Construction and Building Materials}, {\it 178}, pp.
204-210. 10.1016/j.conbuildmat.2018.05.104.
\شماره٪٪۴۷
Consoli, N.C., Rotta, G. V and Prietto, P.D.M., 2000. Influence
of curing under stress on the triaxial response of cemented soils.
{\it Geotechnique}, {\it
50}(1), pp.99-105. doi.org/10.1680/geot.2000.50.1.99.