\شماره٪٪۱
Natke, H.G. and Yao, J.T., 2013. {\it Structural Safety Evaluation
Based on System Identification Approaches: Proceedings of the
Workshop at Lambrecht/Pfalz}. Springer-Verlag.
https://doi.org/10.1007/978-3-663-05657-7.
\شماره٪٪۲
Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad,
A., 2008. Damage detection of truss bridge joints using artificial
neural networks. {\it Expert Systems With Applications},
{\it 35}(3), pp.1122-1131.
https://doi.org/10.1016/j.eswa.2007.08.008.
\شماره٪٪۳
Rao, A.R.M., Lakshmi, K. and Venkatachalam, D., 2012. Damage
diagnostic technique for structural health monitoring using POD
and self adaptive differential evolution algorithm. {\it Computers}
\& {\it Structures}, {\it 106}, pp.228-244.
https://doi.org/10.1016/j.compstruc.2012.05.009.
\شماره٪٪۴
Yan, W.J., Huang, T.L. and Ren, W.X., 2010. Damage detection
method based on element modal strain energy sensitivity. {\it Advances
in Structural Engineering}, {\it 13}(6), pp.1075-1088.
https://doi.org/10.1260/1369-4332.13.6.1075.
\شماره٪٪۵
Vafaei, M., Adnan, A.B. and Abd. Rahman, A.B., 2013. Real-time
seismic damage detection of concrete shear walls using artificial
neural networks. {\it Journal of Earthquake Engineering},
{\it 17}(1), pp.137-154.
https://doi.org/10.1080/13632469.2012.713559.
\شماره٪٪۶
Mortezaei, A. and Ronagh, H.R., 2011. An artificial neural
network model for dynamic analysis of RC buildings subjected
to near-fault ground motions having forward directivity. {\it Journal
of Seismology and Earthquake Engineering}, {\it
13}(3 and 4), pp.179-194.
\شماره٪٪۷
Bao, Y., Li, H., An, Y. and Ou, J., 2012. Dempster-Shafer
evidence theory approach to structural damage detection. {\it Structural
Health Monitoring}, {\it 11}(1), pp.13-26.
https://doi.org/10.1177/1475921710395813.
\شماره٪٪۸
Cowled, C.J., Thambiratnam, D.P., Chan, T.H. and Tan, A.C.,
2014. Structural complexity in structural health monitoring:
design of laboratory model and test plan. {\it In Proceedings of the
7th World Congress on Engineering Asset Management (WCEAM 2012)
(pp. 171-181). Cham: Springer International Publishing.}
https://doi.org/10.1007/978-3-319-06966-1\_17.
\شماره٪٪۹
Weber, B. and Paultre, P., 2010. Damage identification in
a truss tower by regularized model updating. {\it Journal of structural
engineering}, {\it 136}(3), pp.307-316.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000105.
\شماره٪٪۱۰
Heywood, R., Roberts, W., Taylor, R. and Andersen, R., 2000.
Fitness-for-purpose evaluation of bridges using health monitoring
technology. {\it Transportation Research Record}, {\it 1696}(1), pp.193-201.
https://doi.org/10.3141/1696-23.
\شماره٪٪۱۱
Kr\"{a}mer,
C., De Smet, C.A.M. and De Roeck, G., 1999. February
Z24 bridge damage detection tests. {\it In IMAC 17, the International
Modal Analysis Conference (Vol. 3727, pp.1023-1029). Society
of Photo-optical Instrumentation Engineers}.
\شماره٪٪۱۲
Maeck, J. and De Roeck, G., 2003. Description of Z24 benchmark.
{\it Mechanical Systems and Signal Processing}, {\it 17}(1), pp.127-131.
https://doi.org/10.1006/mssp.2002.1548.
\شماره٪٪۱۳
Sohn, H., Czarnecki, J.A. and Farrar, C.R., 2000. Structural
health monitoring using statistical process control. {\it Journal
of Structural Engineering}, {\it 126}(11), pp.1356-1363.
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1356).
\شماره٪٪۱۴
Barraza, J.F., Droguett, E.L., Naranjo, V.M. and Martins,
M.R., 2020. Capsule Neural Networks for structural damage localization
and quantification using transmissibility data. {\it Applied Soft
Computing},
{\it 97}, p.106732. https://doi.org/10.1016/j.asoc.2020.106732.
\شماره٪٪۱۵
Meruane, V., 2016. Online sequential extreme learning machine
for vibration-based damage assessment using transmissibility
data. {\it Journal of Computing in Civil Engineering}, {\it
30}(3), p.04015042.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000517.
\شماره٪٪۱۶
Yuen, K.V., Beck, J.L. and Katafygiotis, L.S., 2006. Efficient
model updating and health monitoring methodology using incomplete
modal data without mode matching. {\it Structural Control and Health
Monitoring: The Official Journal of the International Association
for Structural Control and Monitoring and of the European Association
for the Control of Structures}, {\it 13}(1), pp.91-107.
https://doi.org/10.1002/stc.144.
\شماره٪٪۱۷
Tiachacht, S., Bouazzouni, A., Khatir, S., Behtani, A.,
Zhou, Y.L.M. and Wahab, M.A., 2018. Structural health monitoring
of 3D frame structures using finite element modal analysis and
genetic algorithm. {\it Journal of Vibroengineering}, {\it 20}(1), pp.202-214.
https://doi.org/10.21595/jve.2017.18571.
\شماره٪٪۱۸
Li, X.L., Serra, R. and Olivier, J., 2021. Performance of
fitness functions based on natural frequencies in defect detection
using the standard PSO-FEM approach. {\it Shock and Vibration}, {\it 2021}(1),
p.8863107. https://doi.org/10.1155/2021/8863107.
\شماره٪٪۱۹
Perez-Ramirez, C.A., Jaen-Cuellar, A.Y., Valtierra-Rodriguez,
M., Dominguez-Gonzalez, A., Osornio-Rios, R.A., Romero-Troncoso,
R.D.J. and Amezquita-Sanchez, J.P., 2017. A two-step strategy
for system identification of civil structures for structural
health monitoring using wavelet transform and genetic algorithms.
{\it Applied
Sciences}, {\it 7}(2), p.111. https://doi.org/10.3390/app7020111.
\شماره٪٪۲۰
Bandara, R.P., Chan, T.H. and Thambiratnam, D.P., 2014.
Structural damage detection method using frequency response functions.
{\it Structural Health Monitoring}, {\it 13}(4), pp.418-429.
https://doi.org/10.1177/1475921714522847.
\شماره٪٪۲۱
Alexandrino, P.D.S.L., Gomes, G.F. and Cunha Jr, S.S., 2020.
A robust optimization for damage detection using multiobjective
genetic algorithm, neural network and fuzzy decision making.
{\it Inverse Problems in Science and Engineering}, {\it 28}(1), pp.21-46.
https://doi.org/10.1080/17415977.2019.1583225.
\شماره٪٪۲۲
Ghannadi, P., Khatir, S., Kourehli, S.S., Nguyen, A., Boutchicha,
D. and Wahab, M.A., 2023. April. Finite element model updating
and damage identification using semi-rigidly connected frame
element and optimization procedure: An experimental validation.
{\it In Structures}, {\it 50}, pp.1173-1190. Elsevier.
https://doi.org/10.1016/j.istruc.2023.02.008.
\شماره٪٪۲۳
Ghannadi, P. and Kourehli, S.S., 2022. Efficiency of the
slime mold algorithm for damage detection of large-scale structures.
{\it The Structural Design of Tall and Special Buildings}, {\it 31}(14),
p.e1967. https://doi.org/10.1002/tal.1967.
\شماره٪٪۲۴
YiFei, L., Minh, H.L., Khatir, S., Sang-To, T., Cuong-Le,
T., MaoSen, C. and Wahab, M.A., 2023. Structure damage identification
in dams using sparse polynomial chaos expansion combined with
hybrid K-means clustering optimizer and genetic algorithm. {\it Engineering
Structures}, {\it 283}, p.115891.
https://doi.org/10.1016/j.engstruct.2023.115891.
\شماره٪٪۲۵
Bui, Q.A.T., Al-Ansari, N., Le, H.V., Prakash, I. and Pham,
B.T., 2022. Hybrid model: Teaching learning-based optimization
of artificial neural network (TLBO-ANN) for the prediction of
soil permeability coefficient. {\it Mathematical Problems in Engineering},
{\it 2022}(1), p.8938836. https://doi.org/10.1155/2022/8938836.
\شماره٪٪۲۶
Khoja, I., Ladhari, T., M'sahli, F. and Sakly, A., 2022.
Teaching-learning-based optimization for parameter identification
of an activated sludge process model. {\it Mathematical Models and
Computer Simulations}, {\it 14}(3), pp.516-531.
https://doi.org/10.1134/S2070048222030085.
\شماره٪٪۲۷
Muther, T., Syed, F.I., Dahaghi, A.K. and Negahban, S.,
2022. Socio-inspired multi-cohort intelligence and teaching-learning-based
optimization for hydraulic fracturing parameters design in tight
formations. {\it Journal of Energy Resources Technology},
{\it 144}(7), p.073201.
https://doi.org/10.1115/1.4052182.
\شماره٪٪۲۸
Kumar, S., Tejani, G.G., Pholdee, N., Bureerat, S. and Jangir,
P., 2022. Multi-objective teaching-learning-based optimization
for structure optimization. {\it Smart Science}, {\it 10}(1), pp.56-67.
https://doi.org/10.1080/23080477.2021.1975074.
\شماره٪٪۲۹
Goldberg, D.E., Korb, B. and Deb, K., 1989. Messy genetic
algorithms: Motivation, analysis, and first results. {\it Complex
Systems}, {\it 3}(5), pp.493-530.
\شماره٪٪۳۰
Holland, J.H., 1992. Adaptation In Natural and Artificial
Systems: An Introductory Analysis With Applications to Biology,
Control, and Artificial Intelligence. MIT press.
https://doi.org/10.7551/mitpress/1090.001.0001.
\شماره٪٪۳۱
Clerc, M., 2010. {\it Particle Swarm Optimization} (Vol. 93).
John Wiley \& Sons. https://doi.org/10.1002/9780470612163.
\شماره٪٪۳۲
Rao, R.V. and Rao, R.V., 2016. Teaching-learning-based optimization
algorithm (pp. 9-39). Springer International Publishing.
https://doi.org/10.1007/978-3-319-22732-0.
\شماره٪٪۳۳
Rao, R.V., Savsani, V.J. and Vakharia, D.P., 2011. Teaching-learning-based
optimization: A novel method for constrained mechanical design
optimization problems. {\it Computer-Aided Design}, {\it 43}(3), pp.303-315.
https://doi.org/10.1016/j.cad.2010.12.015.
\شماره٪٪۳۴
Zienkiewicz, O.C., Taylor, R.L. and Zhu J.Z. 2005. The finite
element method: Its basis and fundamentals. Elsevier.
https://doi.org/10.1016/C2009-0-24909-9.
\شماره٪٪۳۵
Chopra, A.K., 2007. Dynamics of structures. Pearson Education
India.
\شماره٪٪۳۶
Figueiredo, E., Park, G., Figueiras, J., Farrar, C. and
Worden, K., 2009. Structural health monitoring algorithm comparisons
using standard data sets (No. LA-14393). Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).
https://doi.org/10.2172/961604.
\شماره٪٪۳۷
Brincker, R., Zhang, L. and Andersen, P., 2000. Modal identification
from ambient responses using frequency domain decomposition.
{\it In IMAC 18: Proceedings of the International Modal Analysis Conference
(IMAC)}, San Antonio, Texas, USA, February 7-10, 2000 (pp.625-630).
\شماره٪٪۳۸
Mitchell, M., 1998. {\it An Introduction to Genetic Algorithms}.
MIT press.
\شماره٪٪۳۹
Chipperfield, A.J., Fleming, P.J., Pohlheim, H. and Fonseca,
C.M., 1994, September. A genetic algorithm toolbox for MATLAB.
{\it In Proceedings of the International Conference on Systems Engineering}.
pp.200-207.