\شماره٪٪۱
Hipke, T., Hohlfeld, J. and Rybandt, S., 2014. Functionally
aluminum foam composites for building industry. {\it Procedia Materials
Science}, {\it 4}, pp.133-138. doi.org/10.1016/j.mspro.2014.07.550.
\شماره٪٪۲
Montanini, R., 2005. Measurement of strain rate sensitivity
of aluminium foams for energy dissipation. {\it International Journal
of Mechanical Sciences}, {\it 47}, pp.26-42.
doi.org/10.1016/j.ijmecsci.2004.12.007.
\شماره٪٪۳
Nouri Damghani, M. and Mohammadzadeh Gonabadi, A., 2019. Numerical
study of energy absorption in aluminum foam sandwich panel structures
using drop hammer test. {\it Journal of Sandwich Structures} \& {\it
Materials},
{\it 21}(1), pp.3-18. doi.org/10.1177/1099636216685315.
\شماره٪٪۴
Liu, S., Li, A., He, S. and Xuan, P., 2015. Cyclic compression
behavior and energy dissipation of aluminum foam-polyurethane
interpenetrating phase composites. {\it Composites Part A: Applied
Science and Manufacturing}, {\it 78}, pp.35-41.
doi.org/10.1016/j.compositesa.2015.07.016.
\شماره٪٪۵
Larner, M. and D\'{a}vila,
L.P., 2013. The mechanical properties
of porous aluminum using finite element method simulations and
compression experiments. {\it MRS Online Proceedings Library},
{\it 1580}, p.905.
doi.org/10.1557/opl.2013.663.
\شماره٪٪۶
Tanaka, S., Hokamoto, K., Irie, S., Okano, T., Ren, Z., Vesenjak,
M. and Itoh, S., 2011. High-velocity impact experiment of aluminum
foam sample using powder gun. {\it Measurement}, {\it 44}, pp.2185-2189.
doi.org/10.1016/j.measurement.2011.07.018.
\شماره٪٪۷
Su\'{a}rez,
O.M., Estremera, E.G., Soler, R., Declet, A. and
Hern\'{a}ndez
-Maldonado, A.J., 2014. Fabrication of porous and nanoporous
aluminum via selective dissolution of Al-Zn alloys. {\it Advances
in Materials Science and Engineering}, {\it 2014}, pp.963042.
doi.org/10.1155/2014/963042.
\شماره٪٪۸
Pinna, A., Pia, G., Casula, M. F., Delogu, F., Sogne, E.,
Falqui, A. and Pilia, L., 2021. Fabrication of nanoporous Al by
vapor-phase dealloying: Morphology features, mechanical properties
and model predictions. {\it Applied Sciences}, {\it 11}(14), p.6639.
doi.org/10.3390/app11146639.
\شماره٪٪۹
Yang, W., Luo, Z.P., Bao, W.K., Xie, H., You, Z.S. and
Jin, H.J. 2021 Light, strong, and stable nanoporous aluminum with
native oxide shell. {\it Science Advances}, {\it 7}, p.28.
DOI:10.1126/sciadv.abb9471.
\شماره٪٪۱۰
Crowson, D.A., Farkas, D. and Corcoran, S.G., 2007. Geometric
relaxation of nanoporous metals: The role of surface relaxation. {\it Scripta
Materialia},
{\it 56}, pp.919-922. doi.org/10.1016/j.scriptamat.2007.02.017.
\شماره٪٪۱۱
Farkas, D., Caro, A., Bringa, E. and Crowson, D. 2013. Mechanical
response of nanoporous gold. {\it Acta Materialia}, {\it 61}(9), pp.3249-3256.
doi.org/10.1016/j.actamat.2013.02.013.
\شماره٪٪۱۲
Ruestes, C.J., Farkas, D., Caro, A. and Bringa, E.M., 2016.
Hardening under compression in Au foams. {\it Acta Materialia},
{\it 108}, pp.1-7.
doi.org/10.1016/j.actamat.2016.02.030.
\شماره٪٪۱۳
Mangipudi, K.R., Epler, E. and Volkert, C.A., 2016. Topology-dependent
scaling laws for the stiffness and strength of nanoporous gold. {\it Acta
Materialia}, {\it
119}, pp.115-122. doi.org/10.1016/j.actamat.2016.08.012 .
\شماره٪٪۱۴
Giri, A., Tao, J., Wang, L., Kirca, M. and To Albert, C.,
2014. Compressive behavior and deformation mechanism of nanoporous
open-cell foam with ultrathin ligaments. {\it Journal of Nanomechanics
and Micromechanics}, {\it 4}(2), p.A4013012.
doi.org/10.1061/(ASCE)NM.2153-5477.0000079.
\شماره٪٪۱۵
Soyarslan, C., Bargmann, S., Pradas, M. and Weissm\"{u}ller,
J., 2018. 3D stochastic bicontinuous microstructures: Generation,
topology and elasticity. {\it Acta Materialia}, {\it 149}, pp.326-340.
doi.org/10.1016/j.actamat.2018.01.005.
\شماره٪٪۱۶
Yildiz, Y.O., Ahadi, A. and Kirca, M. 2020. Strain rate
effects on tensile and compression behavior of nano-crystalline
nanoporous gold: A molecular dynamic study. {\it Mechanics of Materials},
{\it 143},
pp.103338.
doi.org/10.1016/j.mechmat.2020.103338.
\شماره٪٪۱۷
Yildiz, O. and Kirca, M., 2017. A novel atomistic modeling
technique for poly-crystalline nanoporous metals. {\it In: Proceedings
of the 32nd Technical Conference of the American Society for
Composites}. DOI: 10.12783/asc2017/15307.
\شماره٪٪۱۸
Nikravesh, Y., Sameti, A.R. and Khoei, A.R., 2022. An atomistic-continuum
multiscale analysis for heterogeneous nanomaterials and its application
in nanoporous gold foams. {\it Applied Mathematical
Modelling}, {\it 107}, pp.353-378.
doi.org/10.1016/j.apm.2022.02.029.
\شماره٪٪۱۹
Henz, B.J., Hawa, T. and Zachariah, M., 2009. Molecular
dynamics simulation of the kinetic sintering of Ni and Al nanoparticles.
{\it Molecular
Simulation}, {\it 35}, pp.804-811. doi.org/10.1080/08927020902818021.
\شماره٪٪۲۰
Olmsted, D.L., Hector, L.G., Curtin, W.A. and Clifton,
R.J., 2005. Atomistic simulations of dislocation mobility in
Al, Ni and Al/Mg alloys. {\it Modelling and Simulation in Materials
Science and Engineering}, {\it 13}(3), pp.371-388. DOI:
10.1088/0965-0393/13/3/007.
\شماره٪٪۲۱
Khoei, A.R., Khajehpour, B. and Rezaei Sameti, A., 2022.
Surface oxidization effect on the mechanical behavior of aluminum
nanopowders under triaxial compression test. {\it Applied Surface
Science}, {\it 606}, p.154907. doi.org/10.1016/j.apsusc.2022.154907.
\شماره٪٪۲۲
Khoei, A.R., Sameti, A.R. and Mofatteh, H., 2020. Compaction
simulation of crystalline nano-powders under cold compaction
process with molecular dynamics analysis.
{\it Powder Technology}, {\it 373}, pp.741-753.
doi.org/10.1016/j.powtec.2020.06.069.
\شماره٪٪۲۳
Narayan, K., Behdinan, K. and Fawaz, Z., 2007. An engineering-oriented
embedded-atom-method potential fitting procedure for pure fcc
and bcc metals.
{\it Journal of Materials Processing Technology}, {\it 182}, pp.387-397.
doi.org/10.1016/j.jmatprotec.2006.08.018.
\شماره٪٪۲۴
Purja Pun, G.P. and Mishin, Y., 2009. Development of an
interatomic potential for the Ni-Al system. {\it Philosophical Magazine},
{\it 89},
pp.3245-3267.
doi.org/10.1080/14786430903258184.
\شماره٪٪۲۵
Li, J., Xian, Y., Zhou, H., Wu, R., Hu, G. and Xia, R., 2018.
Microstructure-sensitive mechanical properties of nanoporous
gold: A molecular dynamics study. {\it Modelling and Simulation in
Materials Science and Engineering}, {\it 26}, p.075003. DOI:
10.1088/1361-651X/aadb5d.
\شماره٪٪۲۶
Li, J., Li, J., Chen, Y. and Chen, J., 2022. Strengthening
modulus and softening strength of nanoporous gold in multiaxial
tension: Insights from molecular dynamics. {\it Nanomaterials}, {\it 12},
p.4381. doi.org/10.3390/nano12244381.
\شماره٪٪۲۷
Plimpton, S., 1995. Fast parallel algorithms for short-range
molecular dynamics. {\it Journal of Computational Physics}, {\it 117}, pp.1-19.
doi.org/10.1006/jcph.1995.1039.
\شماره٪٪۲۸
Stukowski, A., 2014. A triangulation-based method to identify
dislocations in atomistic models. {\it Journal of the Mechanics and
Physics of
Solids}, {\it 70}, pp.314-319. doi.org/10.1016/j.jmps.2014.06.009.
\شماره٪٪۲۹
Kalpakoglou, T. and Yiatros, S., 2022. Metal foams: A review
for mechanical properties under tensile and shear stress. {\it Frontiers
in Materials}, {\it 9}, p.998673. doi.org/10.3389/fmats.2022.998673.
\شماره٪٪۳۰
Lurie, S.A., Solyaev, Y.O., Rabinskiy, L.N., Polyakov,
P.O. and Sevostianov, I., 2018. Mechanical behavior of porous
Si3N4 ceramics manufactured with 3D printing technology. {\it Journal
of Materials Science}, {\it 53}, pp.4796-4805.
doi.org/10.1007/s10853-017-1881-0.
\شماره٪٪۳۱
Khoei, A.R., Sameti, A.R. and Kazerooni, Y.N., 2018. A
continuum-atomistic multi-scale technique for nonlinear behavior
of nano-materials. {\it International Journal of Mechanical Sciences},
{\it 148}, pp.191-208. doi.org/10.1016/j.ijmecsci.2018.08.012.