\شماره٪٪۱
Eringen, A.C., 1983. On differential equations of nonlocal elasticity
and solutions of screw dislocation and surface waves.{\it Journal
of Applied Physics}, {\it 54}(9), pp. 4703-4710. doi.org/10.1063/1.332803.
\شماره٪٪۲
Romano, G. and Barretta, R., 2017. Stress-driven versus strain-driven nonlocal
integral model for elastic nano-beams. {\it Composites Part B: Engineering},
{\it 114}, pp. 184-188. doi.org/10.1016/j.compositesb.2017.01.008.
\شماره٪٪۳
Mindlin, R.D., 1964. Micro-structure in linear elasticity. {\it Archive
for Rational Mechanics and Analysis}, {\it 16}(1), pp. 51-78.
doi.org/10.1007/BF00248490.
\شماره٪٪۴
Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos,
D., 2003. Bending and stability analysis of gradient elastic
beams. {\it International Journal of Solids and Structures}, {\it 40}(2),
pp. 385-400. doi.org/10.1016/S0020-7683(02)00522-X.
\شماره٪٪۵
Sapsathiarn, Y. and Rajapakse, R.K.N.D., 2012. A model for large
displacements of nanobeams and experimental comparison. {\it IEEE
Transactions on Nanotechnology}, {\it 11}(2), pp. 247-254.
doi.org/10.1109/ TNANO.2011.2160457.
\شماره٪٪۶
Miller, R.E. and Shenoy, V.B., 2000. Size-dependent elastic properties of
nanosized structural elements. {\it Nanotechnology}, {\it 11}(3), pp. 139-147.
doi.org/10.1088/0957-4484/11/3/301.
\شماره٪٪۷
Nilsson, S.G., Sarwe, E.L. and Montelius, L., 2003. Fabrication and
mechanical characterization of ultrashort nanocantilevers. {\it Applied Physics
Letters}, {\it 83}(5), pp. 990-992. doi.org/10.1063/1.1592303.
\شماره٪٪۸
Nilsson, S.G., Borrise, X. and Montelius, L., 2004. Size effect
on Young's modulus of thin chromium cantilevers. {\it Applied Physics
Letters}, {\it 85}(16), pp. 3555-3557. doi.org/10.1063/1.1807945.
\شماره٪٪۹
Patti, A., Barretta, R., De Sciarra, F.M., Mensitieri, G., Menna,
C. and Russo, P., 2015. Flexural properties of multi-wall carbon
nanotube/polypropylene composites: Experimental investigation
and nonlocal modeling. {\it Composite Structues}, {\it 131}, pp. 282-289.
doi.org/10.1016/j.compstruct.2015.05.002.
\شماره٪٪۱۰
Stempin, P. and Sumelka, W., 2020. Space-fractional Euler-Bernoulli
beam model-theory and identification for silver nanobeam bending.
{\it International Journal of Mechanical Sciences}, {\it 186}, pp. 111-119.
doi.org/10.1016/j.ijmecsci.2020.105902.
\شماره٪٪۱۱
Kr$\ddot{\rm{o}}$ner, E., 1967. Elasticity theory of materials with long
cohesive forces. {\it International Journal of Solids and Structures},
{\it 3}(5), pp. 731-742. doi.org/10.1016/0020-7683(67)90049-2.
\شماره٪٪۱۲
Eringen, A.C., 1972. Linear theory of nonlocal elasticity and
dispersion of plane waves. {\it International Journal of Engineering
Science}, {\it 10}(5), pp. 425-435. doi.org/10.1016/0020-7225(72)90050-X.
\شماره٪٪۱۳
Eringen, A.C. and Edelen, D., 1972. On nonlocal elasticity. {\it International
Journal of Engineering Science}, {\it 10}(3), pp. 233-248.
doi.org/10.1016/0020-7225(72)90039-0.
\شماره٪٪۱۴
Peddieson, J., Buchanan, G.R. and McNitt, R.P., 2003. Application
of nonlocal continuum models to nanotechnology. {\it International
Journal of Engineering Science}, {\it 41}(3-5), pp. 305-312.
doi.org/10.1016/S0020-7225(02)00210-0.
\شماره٪٪۱۵
Wang, Q. and Shindo, Y., 2006. Nonlocal continuum models for
carbon nanotubes subjected to static loading. {\it Journal of Mechanics
of Materials and Structures}, {\it 1}(4), pp. 663-680.
doi.org/10.2140/jomms.2006.1.663.
\شماره٪٪۱۶
Wang, Q. and Liew, K.M., 2007. Application of nonlocal continuum
mechanics to static analysis of micro-and nano-structures. {\it Physics
Letters A}, {\it 363}(3), pp. 236-242. doi.org/10.1016/j.physleta.2006.10.093.
\شماره٪٪۱۷
Abu-Hilal, M., 2003. Forced vibration of Euler--Bernoulli beams
by means of dynamic Green functions. {\it Journal of Sound and Vibration},
{\it 267}(2), pp. 191-207. doi.org/10.1016/S0022-460X(03)00178-0.
\شماره٪٪۱۸
Ghannadiasl, A. and Mofid, M., 2014. Dynamic green function for response
of timoshenko beam with arbitrary boundary conditions. {\it Mechanics
Based Design of Structures and Machines}, {\it 42}(1), pp. 97-110.
doi.org/10.1080/15397734.2013.836063.
\شماره٪٪۱۹
Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J., 2016.
Bending of Euler--Bernoulli beams using Eringen's integral formulation:
A paradox resolved. {\it International Journal of Engineering Science},
{\it 99}, pp. 107-116. doi.org/10.1016/j.ijengsci.2015.10.013.
\شماره٪٪۲۰
Kukla, S. and Zamojska, I., 2007. Frequency analysis of axially loaded
stepped beams by Green's function method. {\it Journal of Sound and
Vibration}, {\it 300}(3-5), pp. 1034-1041. doi.org/10.1016/j.jsv.2006.07.047.
\شماره٪٪۲۱
Kiani, K. and Pakdaman, H., 2018. Nonlocal vibrations and potential
instability of monolayers from double-walled carbon nanotubes subjected to
temperature gradients. {\it International Journal of Mechanical Sciences},
{\it 144}, pp. 576-599. doi.org/10.1016/j.ijmecsci.2018.06.018.
\شماره٪٪۲۲
Kiani, K. and Pakdaman, H., 2020. On the nonlocality of bilateral
vibrations of single-layered membranes from vertically aligned
double-walled carbon nanotubes. {\it Physica Scripta}, {\it 95}(3), p. 035221.
doi.org/10.1088/1402-4896/ab43b6.
\شماره٪٪۲۳
Yuan, Y., Xu, K. and Kiani, K., 2020. Torsional vibration of
nonprismatically nonhomogeneous nanowires with multiple defects:
Surface energy-nonlocal-integro-based formulations. {\it Applied Mathematical
Modelling}, {\it 82}, pp. 17-44. doi.org/10.1016/j.apm.2020.01.030.
\شماره٪٪۲۴
Kiani, K. and \.{Z}ur, K.K., 2021. Vibrations of double-nanorod-systems
with defects using nonlocal-integral-surface energy-based formulations.
{\it Composite Structures}, {\it 256}, pp. 113028.
doi.org/10.1016/ j.compstruct.2020.113028.
\شماره٪٪۲۵
Tuna, M. and Kirca, M., 2016. Exact solution of Eringen's nonlocal
integral model for bending of Euler--Bernoulli and Timoshenko beams.
{\it International Journal of Engineering Science}, {\it 105}, pp. 80-92.
doi.org/10.1016/j.ijengsci.2016.05.001.
\شماره٪٪۲۶
Romano, G. and Barretta, R., 2016. Comment on the paper ``Exact
solution of Eringen's nonlocal integral model for bending of
Euler--Bernoulli and Timoshenko beams'' by Meral Tuna \& Mesut
Kirca. {\it International Journal of Engineering Science}, {\it 100}(109),
pp. 240-242. doi.org/10.1016/j.ijengsci.2016.09.009.
\شماره٪٪۲۷
Polyanin, P. and Manzhirov, A.V., 2008. {\it Handbook of Integral
Equations}. Chapman and Hall/CRC. doi.org/10.1201/9781420010558.
\شماره٪٪۲۸
Delves, L.M. and Mohamed, J.L., 1985. {\it Computational Methods for
Integral Equations}. CUP Archive.
\شماره٪٪۲۹
Abdou, M.A., Mohamed, K.J. and Ismal, A.S., 2002. Toeplitz matrix
and product Nystrom methods for solving the singular integral
equation. {\it Le Matematiche}, {\it 57}(1), pp. 21-37.
\شماره٪٪۳۰
Tong, M.S., Qian, Z.G. and Chew, W.C., 2010. Nystr$\ddot{\rm{o}}$m method
solution of volume integral equations for electromagnetic scattering by 3D
penetrable objects. {\it IEEE Transactions on Antennas and Propagation},
{\it 58}(5), pp. 1645-1652. doi.org/10.1109/TAP.2010.2044350.
\شماره٪٪۳۱
Occorsio, D. and Russo, M.G., 2014. Nystr$\ddot{\rm{o}}$m methods for Fredholm
integral equations using equispaced points. {\it Filomat}, {\it 28}(1),
pp. 49-63. doi.org/10.2298/FIL1401049O.
\شماره٪٪۳۲
Bremer, J. and Gimbutas, Z., 2012. A Nystr$\ddot{\rm{o}}$m method for weakly
singular integral operators on surfaces. {\it Journal of Computational
Physics}, {\it 231}(14), pp. 4885-4903. doi.org/10.1016/j.jcp.2012.04.003.
\شماره٪٪۳۳
Dick, J., Kritzer, P., Kuo, F.Y. and Sloan, I.H., 2007.
Lattice-Nystr$\ddot{\rm{o}}$m method for Fredholm integral equations of the
second kind with convolution type kernels. {\it Journal of Complexity},
{\it 23}(4-6), pp. 752-772. doi.org/10.1016/j.jco.2007.03.004.
\شماره٪٪۳۴
Kanwal, R.P., 2012. {\it Generalized Functions: Theory and Applications}.
Springer Science \& Business Media.