\شماره٪٪۱
Al-Rawas, A.A., Hago, A.W. and Al-Sarmi, H., 2005. Effect of
lime, cement and Sarooj (artificial pozzolan) on the swelling
potential of an expansive soil from Oman. {\it Building and
Environment}, {\it 40}(5),
pp.681-687. https://doi.org/10.1016/j.buildenv.2004.08.028.
\شماره٪٪۲
Norrish, K., 1954. The swelling of montmorillonite. {\it Discussions
of the Faraday society},
{\it 18}, pp.120-134. https://doi.org/10.1039/DF9541800120.
\شماره٪٪۳
Standard, A.S.T.M., 2006. C136, 2006. Standard test method
for sieve analysis of fine and coarse aggregates. ASTM International,
West Conshohocken,PA.
https://www.astm.org/d4546-21.html.
\شماره٪٪۴
Bowles, J.E., 1988. Foundation analysis and design.
http://worldcat.org/isbn/0070067767.
\شماره٪٪۵
Verbeke, J., Ahn, J. and Chambr\'{e}, P.L.,
1997. Long-term behavior
of buffer materials in geologic repositories for high-level wastes. Report
University of California at Berkeley UCB-NE-4220.
https://skb.com/publication/2492625.
\شماره٪٪۶
Bradbury, M.H. and Baeyens, B., 2003. Porewater chemistry in
compacted re-saturated MX-80 bentonite. {\it Journal of Contaminant
Hydrology},
{\it 61}(1-4), pp.329-338. https://doi.org/10.1016/S01697722(02)00125-0.
\شماره٪٪۷
Krupskaya, V.V., Zakusin, S.V., Tyupina, E.A., Dorzhieva, O.V.,
Zhukhlistov, A.P., Belousov, P.E. and Timofeeva, M.N., 2017.
Experimental study of montmorillonite structure and transformation
of its properties under treatment with inorganic acid solutions.
{\it Minerals}, {\it 7}(4),
p.49. https://doi.org/10.3390/min7040049.
\شماره٪٪۸
Leroy, P. and Revil, A., 2004. A triple-layer model of the surface
electrochemical properties of clay minerals. {\it Journal of Colloid
and Interface Science}, {\it 270}(2), pp.371-380.
https://doi.org/10.1016/j.jcis.2003.08.007.
\شماره٪٪۹
Nalbanto\u{g}lu, Z., 2004. Effectiveness of class C fly ash as
an expansive soil stabilizer. {\it Construction and Building Materials},
{\it 18}(6),
pp.377-381. https://doi.org/10.1016/j.conbuildmat.2004.03.011.
\شماره٪٪۱۰
Dang, L.C., Fatahi, B. and Khabbaz, H., 2016. Behaviour of expansive
soils stabilized with hydrated lime and bagasse fibres. {\it Procedia
Engineering},
{\it 143}, pp.658-665. https://doi.org/10.1016/j.proeng.2016.06.093.
\شماره٪٪۱۱
Soltani, A., Taheri, A., Khatibi, M. and Estabragh, A.R., 2017.
Swelling potential of a stabilized expansive soil: A comparative
experimental study. {\it Geotechnical and Geological Engineering}, {\it 35},
pp.1717-1744.
https://doi.org/10.1007/s10706-017-0204-1.
\شماره٪٪۱۲
Villar, M.V. and Lloret, A.J.A.C.S., 2004. Influence of temperature
on the hydro-mechanical behaviour of a compacted bentonite. {\it Applied
Clay
Science}, {\it
26}(1-4), pp.337-350. https://doi.org/10.1016/j.clay.2003.12.026.
\شماره٪٪۱۳
Tripathy, S., Bag, R. and Thomas, H.R., 2015. Enhanced isothermal
effect on swelling pressure of compacted MX80 bentonite. {\it In Engineering
Geology for Society and Territory-Volume 6: Applied Geology for
Major Engineering Projects}(pp. 537-539). Springer International
Publishing. https://doi.org/10.1007/978-3-319-09060-3\_96.
\شماره٪٪۱۴
Bag, R. and Rabbani, A., 2017. Effect of temperature on swelling
pressure and compressibility characteristics of soil. {\it Applied
Clay Science}, {\it 136}, pp.1-7. https://doi.org/10.1016/j.clay.2016.10.043.
\شماره٪٪۱۵
Ye, W.M., Wan, M., Chen, B., Chen, Y.G., Cui, Y.J. and Wang,
J., 2013. Temperature effects on the swelling pressure and saturated
hydraulic conductivity of the compacted GMZ01 bentonite. {\it Environmental
Earth Sciences}, {\it 68}, pp.281-288.
https://doi.org/10.1007/s12665-012-1738-4.
\شماره٪٪۱۶
Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M. and Cui, Y.J.,
2018. Combined thermal and saline effects on the swelling pressure
of densely compacted GMZ bentonite. {\it Applied Clay
Science}, {\it 166}, pp.318-326.
https://doi.org/10.1016/j.clay.2018.10.001.
\شماره٪٪۱۷
Rajasekaran, G., 2005. Sulphate attack and ettringite formation
in the lime and cement stabilized marine clays. {\it
Ocean Engineering}, {\it 32}(8-9),
pp.1133-1159. https://doi.org/10.1016/j.oceaneng.2004.08.012.
\شماره٪٪۱۸
Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir,
M.M. and Mohamad, E.T., 2017. Improvement of problematic soils
with biopolymer-an environmentally friendly soil stabilizer. {\it Journal
of Materials in Civil Engineering}, {\it 29}(2), p.04016204.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
\شماره٪٪۱۹
Thangaraj, R. and Thenmozhi, R., 2013. Sustainable concrete using
high volume fly ash from thermal power plants. {\it Ecol. Environ.
Conserv}, {\it 19}(2), pp.461-466.
\شماره٪٪۲۰
Heidari, E.A., Alidadi, H., Sarkhosh, M. and Sadeghian, S., 2017.
Zaveh cement plant environmental impact assessment using Iranian
Leopold Matrix. {\it Journal of Research in Environmental Health}, {\it 3}(1),
pp.84-93. https://doi.org/10.22038/jreh.2017.23003.1144.
\شماره٪٪۲۱
Naeini, S.A. and Ghorbanali, M., 2010. Effect of wet and dry
conditions on strength of silty sand soils stabilized with epoxy
resin polymer. {\it Journal of Applied Sciences}, {\it 10}(22), pp.2839-2846.
https://doi:10.3923/jas.2010.2839.2846.
\شماره٪٪۲۲
Buritatum, A., Horpibulsuk, S., Udomchai, A., Suddeepong, A.,
Takaikaew, T., Vichitcholchai, N., Horpibulsuk, J. and Arulrajah,
A., 2021. Durability improvement of cement stabilized pavement
base using natural rubber latex. {\it Transportation Geotechnics}, {\it 28},
p.100518. https://doi.org/10.1016/j.trgeo.2021.100518.
\شماره٪٪۲۳
Peng, C., Zheng, J., Huang, S., Li, S., Li, D., Cheng, M. and
Liu, Y., 2017. Application of sodium alginate in induced biological
soil crusts: enhancing the sand stabilization in the early stage. {\it Journal
of Applied Phycology}, {\it 29}, pp.1421-1428.
https://doi.org/10.1007/s10811-017-1061-2.
\شماره٪٪۲۴
Zhao, Y., Zhuang, J., Wang, Y., Jia, Y., Niu, P. and Jia, K.,
2020. Improvement of loess characteristics using sodium alginate. {\it Bulletin
of Engineering Geology and the Environment}, {\it 79}, pp.1879-1891.
https://doi.org/10.1007/s10064-019-01675-z.
\شماره٪٪۲۵
Torfi, S., Khayat, N. and Horpibulsuk, S., 2021. Sustainable
stabilization of compacted clay using sodium alginate for subgrade
application. {\it International Journal of Geosynthetics and Ground
Engineering}, {\it 7}, pp.1-15. https://doi.org/10.1007/s40891-021-00322-6.
\شماره٪٪۲۶
Bakhshizadeh, A., Khayat, N. and Horpibulsuk, S., 2022. Surface
stabilization of clay using sodium alginate. {\it Case Studies in
Construction Materials}, {\it 16}, p.e01006.
https://doi.org/10.1016/j.cscm.2022.e01006.
\شماره٪٪۲۷
Bakhshi, M. and Sadeghi, D., 2019. Alginate, a Polymer Purified
from Seaweed and Its Applications in Pharmaceutical Nano-biotechnology-A
Narrative Review. {\it Journal of Marine Medicine}, {\it 1}(3), pp.121-128.
https://doi.org/10.30491/1.3.1.
\شماره٪٪۲۸
Estabragh, A.R., Amini, M. and Soltanian, M.R., 2020. Aging effects
on the swelling behavior of compacted bentonite. {\it Bulletin of
Engineering Geology and the Environment}, {\it 79}, pp.2341-2352.
https://doi.org/10.1007/s10064-019-01708-7.
\شماره٪٪۲۹
Cho, W.J., Lee, J.O. and Kang, C.H., 2000. Influence of temperature
elevation on the sealing performance of a potential buffer material
for a high-level radioactive waste repository. {\it Annals of Nuclear
Energy},
{\it 27}(14), pp.1271-1284. https://doi.org/10.1016/S0306-4549(99)00124-3.
\شماره٪٪۳۰
Abdi, M.R. and Wild, S., 1993. Sulphate expansion of lime-stabilized
kaolinite: I. {\it Physical characteristics}. {\it Clay Minerals}, {\it 28}(4),
pp.555-567. https://doi.org/10.1180/claymin.1993.028.4.06.
\شماره٪٪۳۱
Khademi, H., Hojati, S. 2010. Distribution and formation of
phyllosilicates in some of the Central Iran's Tertiary sediments.
{\it Iranian Journal of Crystallography and Mineralogy}, [In Persian].
http://ijcm.ir/article-1-543-fa.html.
\شماره٪٪۳۲
Neaman, A. and Singer, A., 2004. The effects of palygorskite
on chemical and physico-chemical properties of soils: A
review. {\it Geoderma}, {\it 123}(3-4),
pp.297-303. https://doi.org/10.1016/j.geoderma.2004.02.013.