\شماره٪٪۱
Zienkiewicz, O.C., Gallagher, R.H. and Hood, P., 1975. {\it Newtonian
and non-Newtonian Viscous Incompressible Flow. Temperature Induced
Flows. Finite Element Solutions}. The Mathematics of Finite Elements
and Applications II.
\شماره٪٪۲
Taylor, R.L. and Zienkiewicz, O.C., 2013. {\it The Finite Eelement Method}.
Butterworth-Heinemann Oxford.
\شماره٪٪۳
Guymon, G.L., Scott, V.H. and Herrmann, L.R., 1970. A general
numerical solution of the two-dimensional diffusion-convection
equation by the finite element method. {\it Water Resources Research},
{\it 6}(6), pp. 1611-1617. https://doi.org/10.1029/WR006i006p01611.
\شماره٪٪۴
Hughes, T.J., 1979. A multidimentional upwind scheme with
no crosswind diffusion. {\it Finite Element Methods for Convection
Dominated Flows}, AMD 34.
\شماره٪٪۵
Hughes, T.J., 1982. A theoretical framework for Petrov-Galerkin
methods with discontinuous weighting functions: Application to
the streamline-upwind procedure. {\it Finite Element in Fluids}, {\it 4},
pp. Chapter-3.
\شماره٪٪۶
Johnson, C. and Saranen, J., 1986. Streamline diffusion methods
for the incompressible Euler and Navier-Stokes equations. {\it Mathematics
of Computation}, {\it 47}(175), pp. 1-18.
https://doi.org/10.1090/S0025-5718-1986-0842120-4.
\شماره٪٪۷
Johnson, C., Navert, U. and Pitkaranta, J., 1984. Finite
element methods for linear hyperbolic problems. {\it Computer Methods
in Applied Mechanics and Engineering}, {\it 45}, pp. 285-312.
https://doi.org/10.1016/0045-7825(84)90158-0.
\شماره٪٪۸
Douglas, Jr, J. and Russell, T.F., 1982. Numerical methods
for convection-dominated diffusion problems based on combining the
method of characteristics with finite element or finite difference procedures.
{\it SIAM Journal on Numerical Analysis}, {\it 19}(5), pp. 871-885.
https://doi.org/10.1137/0719063.
\شماره٪٪۹
Celia, M.A., Russell, T.F., Herrera, I. and Ewing, R.E.,
1990. An Eulerian-Lagrangian localized adjoint method for the
advection-diffusion equation. {\it Advances in Water Resources}, {\it 13}(4),
pp. 187-206. https://doi.org/10.1016/0309-1708(90)90041-2.
\شماره٪٪۱۰
Hughes, T.J., Franca, L.P. and Hulbert, G.M., 1989. A new
finite element formulation for computational fluid dynamics:
VIII. The Galerkin/least-squares method for advective-diffusive
equations. {\it Computer Methods in Applied Mechanics and Engineering},
{\it 73}(2), pp. 173-189. https://doi.org/10.1016/0045-7825(89)90111-4.
\شماره٪٪۱۱
Zienkiewicz, O.C., 1983. {\it Finite Elements in Fluid Mechanics:
A Decade of Progress}. Institute for Numerical Methods in Engineering,
University College of SWansea.
\شماره٪٪۱۲
L$\ddot{\rm{o}}$hner, R., Morgan, K. and Zienkiewicz, O.C., 1984. The
solution of non-linear hyperbolic equation systems by the finite
element method. {\it International Journal for Numerical Methods in
Fluids}, {\it 4}(11), pp. 1043-1063. https://doi.org/10.1002/fld.1650041105.
\شماره٪٪۱۳
Donea, J., 1984. A Taylor--Galerkin method for convective transport
problems. {\it International Journal for Numerical Methods in Engineering},
{\it 20}(1), pp. 101-119. https://doi.org/10.1002/nme.1620200108.
\شماره٪٪۱۴
Zhang, X.H., Ouyang, J. and Zhang, L., 2009. Element-free
characteristic Galerkin method for Burgers' equation. {\it Engineering
Analysis with Boundary Elements}, {\it 33}(3), pp. 356-362.
https://doi.org/10.1016/ j.enganabound.2008.07.001.
\شماره٪٪۱۵
Wang, X., Wang, H. and Liu, Y., 2022. A semi-Lagrangian
meshfree Galerkin method for convection-dominated partial differential
equations. {\it Computer Methods in Applied Mechanics and Engineering},
{\it 391}, p. 114546. https://doi.org/10.1016/j.cma.2021.114546.
\شماره٪٪۱۶
Liu, Y., Zhang, W., Jiang, Y. and Ye, Z., 2016. A high-order finite volume
method on unstructured grids using RBF reconstruction. {\it Computers} \&
{\it Mathematics with Applications}, {\it 72}(4), pp. 1096-1117.
https://doi.org/10.1016/j.camwa.2016.06.024.
\شماره٪٪۱۷
Li, R., Wu, Q. and Zhu, S., 2019. Proper orthogonal decomposition
with SUPG-stabilized isogeometric analysis for reduced order
modelling of unsteady convection-dominated convection-diffusion-reaction
problems. {\it Journal of Computational Physics}, {\it 387}, pp. 280-302.
https://doi.org/10.1016/j.jcp.2019.02.051.
\شماره٪٪۱۸
Grimberg, S., Farhat, C. and Youkilis, N., 2020. On the
stability of projection-based model order reduction for convection-dominated
laminar and turbulent flows. {\it Journal of Computational Physics},
{\it 419}, p. 109681. https://doi.org/10.1016/j.jcp.2020.109681.
\شماره٪٪۱۹
Singh, V. and Mohanty, R.K., 2019. Local meshless method
for convection dominated steady and unsteady partial differential
equations. {\it Engineering with Computers}, {\it 35}, pp. 803-812.
https://doi.org/10.1007/s00366-018-0632-4.
\شماره٪٪۲۰
Javed, A., Mazhar, F., Shams, T.A., Ayaz, M. and Hussain,
N., 2019. A stabilized RBF finite difference method for convection
dominated flows over meshfree nodes. {\it Engineering Analysis with
Boundary Elements}, {\it 107}, pp. 159-167.
https://doi.org/10.1016/ j.enganabound.2019.07.008.
\شماره٪٪۲۱
Liu, G.R. and Gu, Y.T., 2005. {\it An Introduction to Meshfree
Methods and Their Programming}. Springer Science \& Business Media.
https://doi.org/10.1007/1-4020-3468-7.
\شماره٪٪۲۲
Tijsseling, A.S., 2003. Exact solution of linear hyperbolic
four-equation system in axial liquid-pipe vibration. {\it Journal
of Fluids and Structures}, {\it 18}(2), pp. 179-196.
https://doi.org/10.1016/j.jfluidstructs.2003.07.001.