\شماره٪٪۱
Moghaddas Tafreshi, S.N. and Khalaj, O., 2008. Laboratory tests
of small-diameter HDPE pipes buried in reinforced sand under
repeated-load. {\it Geotextiles and Geomembranes}, {\it 26}(2), pp.145-163.
doi.org/10.1016/j.geotexmem.2007.06.002.
\شماره٪٪۲
El Naggar, H., Turan, A. and Valsangkar, A., 2015. Earth pressure
reduction system using geogrid-reinforced platform bridging for
buried utilities. {\it Journal of Geotechnical and Geoenvironmental
Engineering},
{\it 141}(6), 04015024. doi.org/10.1061/(ASCE)GT.1943-5606.0001307.
\شماره٪٪۳
Azizian, M., Moghaddas Tafreshi, S.N. and Joz Darabi, N., 2020.
Experimental evaluation of an expanded polystyrene (EPS) block-geogrid
system to protect buried pipes. {\it Soil Dynamics and Earthquake
Engineering}, {\it 129}, 105965. doi.org/10.1016/j.soildyn.2019.105965.
\شماره٪٪۴
Babagiray, G., Akbas, S.O. and Anil, O., 2023. Full-Scale
field impact load experiments on buried pipes in geosynthetic-reinforced
soils. {\it Transportation Geotechnics}, {\it 38}, 100927.
https://doi.org/10.1016/j.trgeo.2022.100927.
\شماره٪٪۵
Bildik, S. and Laman, M., 2020. Effect of geogrid reinforcement
on soil-structure-pipe interaction in terms of bearing capacity,
settlement and stress distribution. {\it Geotextiles and Geomembranes},
{\it 48}(6), pp.844-853. https://doi.org/10.1016/j.geotexmem.2020.07.004.
\شماره٪٪۶
Pires, A.C. and Palmeira, E.M., 2021. The influence of geosynthetic
reinforcement on the mechanical behaviour of soil-pipe systems.
{\it Geotextiles and Geomembranes}, {\it 49}(5), pp.
1117-1128.doi.org/10.1016/j.geotexmem.2021.03.006.
\شماره٪٪۷
Tavakoli Mehrjardi, G.H., Moghaddas Tafreshi, S.N. and Dawson,
A.R. Combined use of geocell reinforcement and rubber-soil
mixtures to improve performance of buried pipes. {\it Geotextiles
and Geomembranes},
{\it 34}, pp.116-130. doi.org/10.1016/j.geotexmem.2012.05.004.
\شماره٪٪۸
Moghaddas Tafreshi, S.N., Darabi, N.J. and Dawson, A.R.,
2020. Combining EPS geofoam with geocell to reduce buried pipe
loads and trench surface rutting. {\it Geotextiles and Geomembranes},
{\it 48}(3), pp.400-418. doi.org/10.1016/j.geotexmem.2019.12.011.
\شماره٪٪۹
Hegde, A.M. and Sitharam, T.G., 2015. Experimental and numerical
studies on protection of buried pipelines and underground utilities
using geocells. {\it Geotextiles and Geomembranes}, {\it 43}(5), pp.372-381.
doi.org/10.1016/j.geotexmem.2015.04.010.
\شماره٪٪۱۰
Wang, Y.Q., Li, Y.L., Liu, K., Li, X. and Yang, F., 2022. Slope
displacement and soil pressure of soilbag-retaining wall influenced
by arrangement. {\it Geosynthetics International}, {\it 30}(3), pp.247-258.
doi.org/10.1680/jgein.21.00041a.
\شماره٪٪۱۱
Liu, S., Gao, C., Fan, K., Zhang, C., Wang, Z., Shen, C. and
Han, Z., 2022. Repairing expansive soil channel slope with soilbags.
{\it Geosynthetics International}, pp.1-10. doi.org/10.1680/jgein.22.00254.
\شماره٪٪۱۲
Lai, Z., Jiang, E., Fan, K., Liu, S. H., and Wang, Y., 2023. Full-scale
tests on soilbag-constructed retaining walls with a panel.
{\it Geosynthetics International}, {\it 30}(2), pp.129-136.
doi.org/10.1680/jgein.21.00093.
\شماره٪٪۱۳
Xu, Y., Huang, J., Du, Y. and Sun, D. A., 2008. Earth reinforcement
using soilbags. {\it Geotextiles and Geomembranes}, {\it 26}(3), pp.279-289.
doi.org/10.1016/j.geotexmem.2007.10.003.
\شماره٪٪۱۴
Ye, B., Muramatsu, D., Ye, G.L. and Zhang, F., 2011. Numerical
assessment of vibration damping effect of soilbags. {\it Geosynthetics
International}, {\it 18}(4), pp.159-168. doi.org/10.1680/gein.2011.18.4.159.
\شماره٪٪۱۵
Liu, S.H., Gao, J.J., Wang, Y.Q. and Weng, L.P., 2014. Experimental
study on vibration reduction by using soilbags. {\it Geotextiles
and Geomembranes},
{\it 42}(1), pp.52-62. doi.org/10.1016/j.geotexmem.2013.12.007.
\شماره٪٪۱۶
Ding, G., Wu, J., Wang, J. and Hu, X., 2017. Effect of sand
bags on vibration reduction in road subgrade. {\it Soil Dynamics
and Earthquake Engineering}, {\it 100}, pp. 529-537.
doi.org/10.1016/j.soildyn.2017.07.007.
\شماره٪٪۱۷
Wang, Y.Q., Li, X., Liu, K. and Liu, G., 2019. Experiments
and DEM analysis on vibration reduction of soilbags. {\it Geosynthetics
International}, {\it 26}(5), pp.551-562. doi.org/10.1680/jgein.19.00045.
\شماره٪٪۱۸
Matsuoka, H. and Liu, S., 2003. New earth reinforcement method
by soilbags (``donow"). {\it Soils and Foundations}, {\it 43}(6), pp.173-188.
doi.org/10.3208/sandf.43.6\_173.
\شماره٪٪۱۹
Zhang, C., Liao, J., Zhang, Y. and Wang, L., 2023. Plate load
tests of sSoft foundations reinforced by soilbags with solid wastes
for wind farms. {\it
Materials}, {\it 16}(11), p.4173. doi.org/10.3390/ma16114173.
\شماره٪٪۲۰
Wang, L., Liu, S., Liao, J. and Fan, K., 2019. Field load
tests and modelling of soft foundation reinforced by soilbags.
{\it Geosynthetics International}, {\it 26}(6), pp.580-591.
doi.org/10.1680/jgein.19.00036.
\شماره٪٪۲۱
Liu, S.H., Liao, J., Bong, T.T. and Fan, K.W., 2021. Repeated
loading of soilbag-reinforced road subgrade. {\it Geosynthetics
International}, {\it 28}(2), pp.113-124. doi.org/10.1680/jgein.20.00030.
\شماره٪٪۲۲
Castiglia, M., de Magistris, F.S., Onori, F. and Koseki, J.,
2021. Mitigation systems for the uplift of buried pipelines
in liquefiable soils under repeated shaking through model tests.
{\it Soil Dynamics and Earthquake Engineering}, {\it 148}, 106850.
doi.org/10.1016/j.soildyn.2021.106850.
\شماره٪٪۲۳
American Society for Testing and Materials (ASTM)., 2011. Standard
practice for classification of soils for engineering purposes
(unified soil classification system). ASTM International,
West Conshohocken, PA, USA, ASTM D2487-11. DOI: 10.1520/D2487-11.
\شماره٪٪۲۴
American Society for Testing and Materials (ASTM), 2014. Standard
practice for underground installation of thermoplastic pipe for
sewers and other gravity-flow applications. ASTM International,
West Conshohocken, PA, USA, ASTM D2321-14. DOI: 10.1520/D2321-14.
\شماره٪٪۲۵
American Society for Testing and Materials (ASTM), 2012. Standard
test methods for laboratory compaction characteristics of soil
using modified effort. ASTM International, West Conshohocken,
PA, USA, ASTM D1557-12. DOI: 10.1520/D1557-12.
\شماره٪٪۲۶
American Society for Testing and Materials (ASTM), 2014. Standard
test methods for specific gravity of soil solids by water pycnometer.
ASTM International, West Conshohocken, PA, USA, ASTM D854-14.
DOI:10.1520/D0854-14.
\شماره٪٪۲۷
Institue of standard and Institue of Research of Iran. 2010.
Plastic-Unplasticized Poly (Vinyle Choride) (PVC-U), Fittings
and Piping systems for non Pressure Underground Drainage and
Swerage Specificaton. ISIRI-9118. [In Persian].
\شماره٪٪۲۸
Tavakoli Mehrjardi, G.H., Moghaddas Tafreshi, S.N. and
Dawson, A.R., 2015. Numerical analysis on Buried pipes protected
by combination of geocell reinforcement and rubber-soil mixture.
{\it International Journal of Civil Engineering}, {\it 13}(2),
doi.org/10.22068/IJCE.13.2.90.
\شماره٪٪۲۹
British Standard Institution (BSI)., 1980. Plastics pipework
(thermoplastics materials)- Code of practice for the installation
of unplasticized PVC pipework for gravity drains and sewers.
BS 5955.
\شماره٪٪۳۰
American Association of State Highway and Transpoertation officials
(AASHTO), 2010. Bridge Construction specifications. Washington
DC, USA.
\شماره٪٪۳۱
Moghaddas Tafreshi, S.N. and Tavakoli Mehrjardi, G.H., 2008.
The use of neural network to predict the behavior of small
plastic pipes embedded in reinforced sand and surface settlement
under repeated load. {\it Engineering Applications of Artificial
Intelligence},
{\it 21}(6), pp.883-894. doi.org/10.1016/j.engappai.2007.09.001.
\شماره٪٪۳۲
Brito, L.A.T., Dawson, A.R. and Kolisoja, P.J., 2009. Analytical
evaluation of unbound granular layers in regard to permanent
deformation. {\it Proceedings of the 8th International on the Bearing
Capacity of Roads, Railways, and Airfelds (BCR2A'09)}, Champaign
IL, USA, pp.187-196.
\شماره٪٪۳۳
American Society for Testing and Materials (ASTM)., 2021. Standard
test method for repetitive static plate load tests of soils and
flexible pavement components, for use in evaluation and design
of airport and highway pavements. ASTM International, West
Conshohocken, PA, USA, ASTM D1195M-21. DOI: 10.1520/D1195\_D1195M-21.
\شماره٪٪۳۴
American Society for Testing and Materials (ASTM)., 2021. Standard
test method for nonrepetitive static plate load tests of soils
and flexible pavement components, for use in evaluation and design
of airport and highway pavements1. ASTM International, West
Conshohocken, PA, USA, ASTM D1196M-21. DOI: 10.1520/D1196\_D1196M-21.
\شماره٪٪۳۵
Hsieh, C. and Mao, H.L., 2005. A Bench-scale performance test
for evaluation the geosynthetic reinforcement effects on granular
base courses. {\it Geosynthetics Research and Development}, pp.1-11,
doi.org/10.1061/40782(161)9.
\شماره٪٪۳۶
Association, Uni-Bell PVC Pipe., 2013. {\it Handbook of PVC Pipe
Design and Construction}, Industrial Press.
\شماره٪٪۳۷
Boussinesq, J., 1885. Application des potentiels a l'\'{e}
tude de
l'\'{e}
quilibre et du mouvement des solides
\'{e}lastiques, Paris, Gauthier-Villars.
Reprinted, 1969 with an introduction by A Caquot, Paris, Albert
Blanchard, p.721.
\شماره٪٪۳۸
Love, J.P., 1984. Model testing of geogrids in unpaved roads.
PhD Thesis, Oxford University, Oxford, UK.
\شماره٪٪۳۹
Fakher, A. and Jones, C.J., 1996. Discussion: Bearing capacity
of rectangular footings on geogrid-reinforced sand. {\it Journal
of Geotechnical Engineering}, {\it 122}(4), pp.326-327.
doi.org/10.1061/(ASCE)0733-9410(1996)122:4(326).
\شماره٪٪۴۰
El-Emam, M. and Bathurst, R.J., 2004. Experimental design, instrumentation
and interpretation of reinforced soil wall response using a shaking
table. {\it International Journal of Physical Modeling in Geotechnics},
{\it 4}(4), pp.13-32. doi.org/10.1680/ijpmg.2004.040402.
\شماره٪٪۴۱
Sireesh, S., Sitharam, T.G. and Dash, S.K., 2009. Bearing
capacity of circular footing on geocell-sand mattress overlying
clay bed with void. {\it Geotextiles and Geomembranes}, {\it 27}(2), pp.
89-98. doi.org/10.1016/j.geotexmem.2008.09.005.