\شماره٪٪۱
Mehta, P.K. and Monteiro, P.J., 2014. {\it Concrete: Microstructure,
Properties, and Materials}. McGraw-Hill Education. doi: 10.1036/0071462899.
\شماره٪٪۲
Zhao, S. and Sun, W., 2014. Nano-mechanical behavior of a green ultra-high
performance concrete. {\it Construction and Building Materials}, {\it63}, pp.
150-160. doi: https://doi.org/10.1016/j.conbuildmat.2014.04.029.
\شماره٪٪۳
Wang, C., Yang, C., Liu, F., Wan, C. and Pu, X., 2012. Preparation of
ultra-high performance concrete with common technology and materials.
{\it Cement and Concrete Composites}, {\it34}(4), pp. 538-544. doi:
https://doi.org/10.1016/j.cemconcomp.2011.11.005.
\شماره٪٪۴
Massana, J., Reyes, E., Bernal, J., Le\'{o}n, N. and S\'{a}nchez-Espinosa, E.,
2018. Influence of nano-and micro-silica additions on the durability of a
high-performance self-compacting concrete. {\it Construction and
Building Materials}, {\it 165}, pp. 93-103. doi:
https://doi.org/10.1016/j.conbuildmat.2017.12.100.
\شماره٪٪۵
Shekari, A. and Razzaghi, M.S., 2011. Influence of nano particles on
durability and mechanical properties of high performance concrete.
{\it Procedia Engineering}, {\it14}, pp. 3036-3041. doi:
https://doi.org/10.1016/j.proeng.2011.07.382.
\شماره٪٪۶
Du, H., Du, S., and Liu, X., 2014. Durability performances of concrete with
nano-silica. {\it Construction and Building Materials}, {\it73}, pp. 705-712.
doi: https://doi.org/10.1016/j.conbuildmat.2014.10.014.
\شماره٪٪۷
Beigi, M.H., Berenjian, J., Omran, O.L., Nik, A.S. and Nikbin, I.M., 2013.
An experimental survey on combined effects of fibers and nanosilica on the
mechanical, rheological, and durability properties of self-compacting
concrete. {\it Materials} \& {\it Design}, {\it50}, pp. 1019-1029. doi:
https://doi.org/10.1016/j.matdes.2013.03.046.
\شماره٪٪۸
Rashidi, Y., Korayem, A.H., Farsi, S. and Sadeghi, J., 2023. Utilizing
halloysite nanotube to enhance the properties of cement mortar subjected to
freeze-thaw cycles. {\it Journal of Building Engineering},
{\it75}(2):106832. doi: https://doi.org/10.1016/j.jobe.2023.106832.
+\شماره٪٪۹
Pacheco-Torgal, F. and Jalali, S., 2011. Nanotechnology: Advantages and
drawbacks in the field of construction and building materials.
{\it Construction and Building Materials}, {\it25}(2), pp. 582-590. doi:
https://doi.org/10.1016/j.conbuildmat.2010.07.009.
\شماره٪٪۱۰
Khan, M.I., 2018. Nanosilica/silica fume. in {\it Waste and Supplementary
Cementitious Materials in Concrete: Elsevier}, pp. 461-491. doi:
https://doi.org/10.1016/B978-0-08-102156-9.00014-6.
\شماره٪٪۱۱
Chithra, S., Kumar, S.S. and Chinnaraju, K., 2016. The effect of colloidal
nano-silica on workability, mechanical and durability properties of high
performance concrete with copper slag as partial fine aggregate.
{\it Construction and Building Materials}, {\it113}, pp. 794-804. doi:
https://doi.org/10.1016/j.conbuildmat.2016.03.119.
\شماره٪٪۱۲
Han, B., Yu, X., and Ou, J., 2014. {\it Self-Sensing Concrete in Smart
Structures}, 1st ed. Butterworth-Heinemann (Elsevier), p. 398.
\شماره٪٪۱۳
Yaz{\i}c{\i}, \c{S}., \.{I}nan, G. and Tabak, V., 2007. Effect of of aspect
ratio and volume fraction of steel fiber on the mechanical properties of SFRC.
{\it Construction and Building Materials}, {\it21}(6), pp.
1250-1253. doi: https://doi.org/10.1016/j.conbuildmat.2006.05.025.
\شماره٪٪۱۴
Behfarnia, K. and Behravan, A., 2014. Application of high performance
polypropylene fibers in concrete lining of water tunnels. {\it Materials} \&
{\it Design}, {\it55}, pp. 274-279. doi:
https://doi.org/10.1016/j.matdes.2013.09.075.
\شماره٪٪۱۵
Toutanji, H.A., 1999. Properties of polypropylene fiber reinforced silica fume
expansive-cement concrete. {\it Construction and Building Materials},
{\it13}(4), pp. 171-177. doi: https://doi.org/10.1016/S0950-0618(99)00027-6.
\شماره٪٪۱۶
Wang, J., Dai, Q., Si, R. and Guo, S., 2019. Mechanical, durability, and
microstructural properties of macro synthetic polypropylene (PP)
fiber-reinforced rubber concrete. {\it Journal of Cleaner Production},
{\it234}, pp. 1351-1364. doi: https://doi.org/10.1016/j.jclepro.2019.06.272.
\شماره٪٪۱۷
Kakooei, S., Akil, H.M., Dolati, A. and Rouhi, J., 2012. The corrosion
investigation of rebar embedded in the fibers reinforced concrete.
{\it Construction and Building Materials}, {\it35}, pp. 564-570. doi:
https://doi.org/10.1016/j.conbuildmat.2012.04.051.
\شماره٪٪۱۸
Wheat, H.G., 2002. Using polymers to minimize corrosion of steel in concrete.
{\it Cement and Concrete Composites}, {\it24}(1), pp. 119-126. doi:
https://doi.org/10.1016/S0958-9465(01)00032-4.
\شماره٪٪۱۹
S$\ddot{\rm{o}}$ylev, T. and $\ddot{\rm{O}}$zturan, T., 2014. Durability,
physical and mechanical properties of fiber-reinforced concretes at low-volume
fraction. {\it Construction and Building Materials}, {\it73}, pp. 67-75. doi:
https://doi.org/10.1016/j.conbuildmat.2014.09.058.
\شماره٪٪۲۰
ASTM C778-13, 2013. Standard specification for standard sand. {\it ASTM
International}, West Conshohocken, PA. doi: doi.org/10.1520/C0778-21.
\شماره٪٪۲۱
ASTM C494/C494M-16, 2016. Standard specification for chemical admixtures for
concrete. {\it ASTM International}, West Conshohocken, PA. doi:
doi.org/10.1520/C0494\_C0494M-19E01.
\شماره٪٪۲۲
Abhilash, P., Nayak, D.K., Sangoju, B., Kumar, R. and Kumar, V., 2021.
Effect of nano-silica in concrete; A review. {\it Construction and Building
Materials}, {\it278}:122347. doi:
https://doi.org/10.1016/j.conbuildmat.2021.122347.
\شماره٪٪۲۳
Sujay, H., Nair, N.A., Rao, H.S. and Sairam, V., 2020. Experimental study
on durability characteristics of composite fiber reinforced high-performance
concrete incorporating nanosilica and ultra fine fly ash. {\it
Construction and Building Materials}, {\it262}:120738. doi:
https://doi.org/10.1016/j.conbuildmat.2020.120738.
\شماره٪٪۲۴
Folliard, K.J., Sutfin, D., Turner, R. and Whitney, D.P., 2006. {\it Fiber in
Continuously Reinforced Concrete Pavements}. Technical Report No
FHWA/TX-07/0-4392-2, 198 p.
https://ctr.utexas.edu/wp-content/uploads/pubs/0\_4392\_2.pdf.
\شماره٪٪۲۵
Khooshechin, M. and Tanzadeh, J., 2018. Experimental and mechanical
performance of shotcrete made with nanomaterials and fiber reinforcement.
{\it Construction and Building Materials}, {\it165}, pp. 199-205 doi:
https://doi.org/10.1016/j.conbuildmat.2017.12.199.
\شماره٪٪۲۶
Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T., 2016. High-performance
fiber-reinforced concrete: A review. {\it Journal of Materials Science},
{\it51}, pp. 6517-6551, doi: https://doi.org/10.1007/s10853-016-9917-4.
\شماره٪٪۲۷
ASTM C109 / C109M-16a, 2016. Standard test method for compressive strength of
hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). {\it ASTM
International}, West Conshohocken, PA. doi:
doi.org/10.1520/C0109\_C0109M-21.
\شماره٪٪۲۸
Rashidi, Y., Roudi, M.R.R., Korayem, A.H. and Shamsaei, E., 2021.
Investigation of ultrasonication energy effect on workability, mechanical
properties and pore structure of halloysite nanotube reinforced cement
mortars. {\it Construction and Building Materials}, {\it304}:124610. doi:
https://doi.org/10.1016/j.conbuildmat.2021.124610.
\شماره٪٪۲۹
ASTM C230/C230M-14, 2014. Standard specification for flow table for use in
Ttsts of hydraulic cement. {\it ASTM International}, West Conshohocken, PA.
doi: doi.org/10.1520/C0230\_C0230M-23.
\شماره٪٪۳۰
ASTM C305-14, 2014. Standard practice for mechanical mixing of hydraulic cement
pastes and mortars of plastic consistency. {\it ASTM International}, West
Conshohocken, PA. doi: doi.org/10.1520/C0305-20.
\شماره٪٪۳۱
ASTM C511-03, 2014. Standard practice for mixing rooms, moist cabinets, moist
rooms, and water storage tanks used in the testing of hydraulic cements and
concretes. {\it ASTM International}, West Conshohocken, PA. doi:
doi.org/10.1520/C0511-21.
\شماره٪٪۳۲
ASTM C348-14, 2014. Standard test method for flexural strength of hydraulic
cement mortars. {\it ASTM International}, West Conshohocken, PA.
doi: doi.org/10.1520/C0349-18.
\شماره٪٪۳۳
ASTM C496/C496M-04, 2014. Standard test method for splitting tensile
strength of cylindrical concrete specimens. {\it ASTM International}, West
Conshohocken, PA. doi: doi.org/10.1520/C0496\_C0496M-17.
\شماره٪٪۳۴
ASTM C597-16, 2016. Standard test method for pulse velocity through concrete.
{\it ASTM International}, West Conshohocken, PA. doi:
doi.org/10.1520/C0597-16.
\شماره٪٪۳۵
ASTM C1585-04, 2016. Standard test method for measurement of rate of
absorption of water by hydraulic cement concretes,
{\it ASTM International}, West Conshohocken, PA. doi: doi.org/10.1520/C1585-20.
\شماره٪٪۳۶
NT. BUILD 492, 1999. Chloride Migration Coefficient from Non-steady-state
Migration Experiments. Nordtest, Finland.
\شماره٪٪۳۷
Zahedi, M., Ramezanianpour, A.A. and Ramezanianpour, A.M., 2015.
Evaluation of the mechanical properties and durability of cement mortars
containing nanosilica and rice husk ash under chloride ion penetration.
{\it Construction and Building Materials}, {\it78}, pp. 354-361. doi:
https://doi.org/10.1016/j.conbuildmat.2015.01.045.
\شماره٪٪۳۸
Langaroudi, M.A.M. and Mohammadi, Y., 2018. Effect of nano-clay on workability,
mechanical, and durability properties of self-consolidating concrete
containing mineral admixtures. {\it Construction and Building Materials},
{\it191}, pp. 619-634. doi: https://doi.org/10.1016/j.conbuildmat.2018.10.044.
\شماره٪٪۳۹
Ramezanianpour, A.A., Mortezaei, M. and Mirvalad, S., 2021. Synergic
effect of nano-silica and natural pozzolans on transport and mechanical
properties of blended cement mortars. {\it Journal of Building Engineering},
{\it44}:102667. doi: https://doi.org/10.1016/j.jobe.2021.102667.
\شماره٪٪۴۰
Kong, D., Huang, S., Corr, D., Yang, Y. and Shah, S.P., 2018. Whether do
nano-particles act as nucleation sites for CSH gel growth during cement
hydration? {\it Cement and Concrete Composites}, {\it87}, pp. 98-109 doi:
https://doi.org/10.1016/j.cemconcomp.2017.12.007.
\شماره٪٪۴۱
Bosiljkov, V.B., 2003. SCC mixes with poorly graded aggregate and high volume of
limestone filler. {\it Cement and Concrete Research}, {\it33}(9), pp.
1279-1286. doi: https://doi.org/10.1016/S0008-8846(03)00013-9.
\شماره٪٪۴۲
Said, A.M., Zeidan, M.S., Bassuoni, M. and Tian, Y., 2012. Properties of
concrete incorporating nano-silica. {\it Construction and Building Materials},
{\it36}, pp. 838-844. doi: https://doi.org/10.1016/j.conbuildmat.2012.06.044.
\شماره٪٪۴۳
Song, P. and Hwang, S., 2004. Mechanical properties of high-strength steel
fiber-reinforced concrete. {\it Construction and Building Materials},
{\it18}(9), pp. 669-673. doi:
https://doi.org/10.1016/j.conbuildmat.2004.04.027.
\شماره٪٪۴۴
Zhao, L., Guo, X., Ge, C., Li, Q., Guo, L., Shu, X. and Liu, J., 2017.
Mechanical behavior and toughening mechanism of polycarboxylate
superplasticizer modified graphene oxide reinforced cement composites.
{\it Composites Part B: Engineering}, {\it113}, pp. 308-316 doi:
https://doi.org/10.1016/j.compositesb.2017.01.056.
\شماره٪٪۴۵
Ye, G., Lura, P., Van Breugel, K. and Fraaij, A., 2004. Study on the
development of the microstructure in cement-based materials by means of
numerical simulation and ultrasonic pulse velocity measurement. {\it Cement
and Concrete Composites}, {\it26}(5), pp. 491-497. doi:
https://doi.org/10.1016/S0958-9465(03)00081-7.
\شماره٪٪۴۶
Whitehurst, E.A., 1951. Soniscope tests concrete structures. in {\it Journal
Proceedings}, {\it47}(2), pp. 433-444.
\شماره٪٪۴۷
Karahan, O. and Ati\c{s}, C.D., 2011. The durability properties of
polypropylene fiber reinforced fly ash concrete. {\it Materials} \&
{\it Design}, {\it32}(2),
pp. 1044-1049. doi: https://doi.org/10.1016/j.matdes.2010.07.011.